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ABSTRACT
Forest land cover is declining at an alarming rate in Zambia and this poses a threat to 
the elimination of major ecosystem services. Identification of sustainable agricultural 
intensification (SAI) practices presents an opportunity to reduce pressure on forest land 
resources. The objective of this study was to estimate the causal effect relationship between 
SAI practices adoption and farmland expansion using the Endogenous Switching Regression 
model. A cross-sectional survey conducted in 2020/21 season using a random sample of 
300 farm households was used to assess the effect of SAI practices adoption on farmland 
expansion. The causal impact estimation revealed that the adoption of SAI practices reduced 
expected land expansion on one hand, while the opposite was true for the non-adoption of 
SAI practices. The findings also indicate that increasing the area under cropping, farmer 
affiliation to farmer associations, and participation in agricultural extension training are 
positive precursors to increasing the probability of adopting SAI practices at the farm level. 
Additionally, the more educated a farmer is, coupled with older age reduces the probability 
of engaging in farmland expansion. These two variables point to the role and importance of 
increased farming experience and knowledge in mitigating agricultural farmland expansion. 
This finding suggests that the mitigation of agricultural productivity challenges through 
technology dissemination should be coupled with farmer education. The results from this 
study, therefore, generally confirm the potential positive impact of SAI technology adoption 
on reducing agricultural farmland expansion among smallholder farmers which translates 
into increased conservation of natural resources, especially forests.

Keywords: Adoption, agricultural land expansion,  binary variable, endogeneity, endogenous 
switching, forestry, Katete, Sustainable Agriculture Intensification

RÉSUMÉ
La couverture forestière diminue à un rythme alarmant en Zambie, ce qui représente une 
menace pour l'élimination des principaux services écosystémiques. L'identification des 
pratiques d'intensification agricole durable (IAD) présente une opportunité de réduire la 
pression sur les ressources forestières. L'objectif de cette étude était d'estimer la relation 
d'effet causal entre l'adoption des pratiques d'IAD et l'expansion des terres agricoles en 
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utilisant le modèle de régression endogène par commutation. Une enquête transversale 
menée en 2020/21 auprès d'un échantillon aléatoire de 300 ménages agricoles a été 
utilisée pour évaluer l'effet de l'adoption des pratiques d'IAD sur l'expansion des terres 
agricoles. L'estimation de l'impact causal a révélé que l'adoption des pratiques d'IAD 
réduisait l'expansion attendue des terres d'une part, tandis que le contraire était vrai pour la 
non-adoption des pratiques d'IAD. Les résultats indiquent également que l'augmentation 
de la superficie cultivée, l'affiliation des agriculteurs à des associations d'agriculteurs et 
la participation à des formations en extension agricole sont des précurseurs positifs 
pour augmenter la probabilité d'adoption des pratiques d'IAD au niveau de l'exploitation 
agricole. De plus, plus un agriculteur est éduqué, associé à un âge plus avancé, moins 
il est probable qu'il s'engage dans l'expansion des terres agricoles. Ces deux variables 
soulignent le rôle et l'importance de l'expérience et des connaissances agricoles accrues 
dans l'atténuation de l'expansion des terres agricoles. Cette constatation suggère que 
l'atténuation des défis de productivité agricole par la diffusion de la technologie devrait 
être couplée à l'éducation des agriculteurs. Les résultats de cette étude confirment donc 
généralement l'impact positif potentiel de l'adoption de la technologie d'IAD sur la 
réduction de l'expansion des terres agricoles chez les petits agriculteurs, ce qui se traduit 
par une conservation accrue des ressources naturelles, en particulier des forêts.

Mots-clés: Adoption, expansion des terres agricoles, variable binaire, endogénéité, 
commutation endogène, foresterie, Katete, Intensification de l'Agriculture Durable

INTRODUCTION
The quest of meeting food needs especially 
for maize amidst the challenges of a growing 
population coupled with declining soil fertility 
mainly due to poor agronomic practices 
is putting a lot of pressure on the natural 
resources in Sub-Saharan Africa (SSA) (Epule, 
2022). Deteriorating soil health poses a global 
challenge in the context of food insecurity, 
climate change and environmental degradation 
(McBratney et al., 2014). In SSA, maize is the 
second most cultivated crop among smallholder 
farmers who do not have adequate access to 
capital to invest in modern yield improvement 
methods. As a result, agriculture is marked 
by low productivity with little application 
of science and technology and farmers often 
resort to increasing the area under production 
by opening up of relatively fertile new 
forest fields in a bid to increase production 
(Chauvin, 2012; Shukla, 2019; Flammini, 
2022). Therefore, in order to compensate for 
low productivity and production in the region, 
the doubling of agricultural food production 

during the past decades was associated with an 
increase in land area under cultivation through 
the practice of opening up new virgin land in 
form of agricultural expansion, a situation that 
has been threatening the eco-system services, 
biodiversity, resilience to climate change, and 
forest resources (Tilman, 1999). Expanding 
agriculture area into forests accounts for 
about 80% of the deforestation globally and 
it is the main cause of tropical deforestation 
(Kaimowitz and Angelsen, 1998). Pressure to 
open up new land for agricultural purposes is 
still increasing as a result of soil degradation, 
socio-economic strains such as poverty, 
increased population as a result of internal 
and regional migration, smaller farm sizes and 
the increase in commodity prices (Angelsen, 
1999; Wynants, 2019). The opening up of 
new land through shifting cultivation at the 
expense of the forest is unsustainable, and only 
satisfactory in regions where the population is 
sparse and there is plenty of land, which can 
be fallowed for many years (Fleeskens, 2010; 
Ngoma et al., 2019). Poor access to agricultural 



HAMAZAKAZA ET AL.,

345

extension and advisory services is among the 
factors that are reducing productivity and yields 
for the major crops such as maize (Zea mays 
L.) in Sub-Saharan Africa (Di Falco, 2014). 
Good agricultural practices can improve the 
sustainability of agriculture on a number of 
fronts, including protecting environmental and 
natural resources (Hobbs, 2003).

In the Zambian context, forest land cover is 
declining at an alarming rate and is threatening 
the elimination of major ecosystem services 
(Matakala et al., 2015). While increasing 
production is necessary to feed a growing 
population and meet changing dietary 
preferences, basing this on expanding area at the 
expense of the forest is unsustainable, given the 
increasing land scarcity and population growth 
(Ngoma, 2019). The annual deforestation rate 
in Zambia is 276,021 ha per annum or 6% 
of the total forest cover (GRZ et al., 2017). 
Between 2000 and 2014, crop production 
related agricultural expansion in Zambia was 
one of the key contributing factors to the total 
forest loss that ranged between 250,000 and 
300,000 hectares per year during the period, 
representing an average annual loss rate of 0.7 
percent of the forestry reserves (Matakala et al., 
2015). This percentage is significantly higher 
than the global rate of deforestation and forest 
loss, which was estimated to be 0.25 percent 
in 2015.  Results of deforestation analysis 
indicate that 102,087 ha of forests were lost in 
the Eastern Province of Zambia between 2010 
and 2014 which is equivalent to an average 
annual deforestation rate of 0.9% in 2010-2014 
(Wathum et al., 2016). Furthermore, the same 
study indicated that the Eastern Province of 
Zambia has been contributing significantly to 
this forest loss and roughly 156,000 ha of forest 
were estimated to have been lost in the province 
during the period 2000 - 2015, with agricultural 
expansion accounting for about 10,036 ha 
(6.4%) of forest loss annually through the 
practice of shifting cultivation.

The agricultural sector has for years been 

battling with finding solutions to mitigate 
agricultural expansion in an effort to conserve 
the forest resources. Among the potential 
best bet options for mitigating agricultural 
expansion and raising crop productivity while 
conserving forest resources is the concept of 
Sustainable Agriculture Intensification (SAI) 
(Ngoma, 2019). In this context SAI is defined 
as a process or system where agricultural yields 
are increased without adverse environmental 
impact and without the conversion of additional 
non-agricultural land (Pretty, 2014). The 
commonly used SAI practices in Sub-Saharan 
Africa and Zambia in particular, include 
capitalization of soil fertility, use of new 
pesticides, agricultural extension training, use 
of indigenous and context-specific knowledge 
in local farming practices, growing crops and 
varieties that are tolerant to biotic and abiotic 
stresses, minimum tillage, use of cover crops, 
crop-livestock integration production practices, 
use of inorganic fertilizers, integrated pest 
and disease management and integrated weed 
management (Sanginga and Woomer, 2009).
 
In the context of econometric analysis, the 
welfare implications of agricultural technology 
pose at least two challenges: unobserved 
heterogeneity and possible endogeneity. 
There seems to be a two-way link between 
technology adoption and household well-being. 
Technology adoption may result in productivity 
enhancement for small producers and greater 
income, but it may also be that greater income 
leads to more technology adoption. In this 
paper, we take into account that the differences 
in cropland expansion variables between those 
farm households that did and those that did not 
adopt SAI practices could be due to unobserved 
heterogeneity. Not distinguishing between 
the casual-effect of technology adoption and 
the effect of unobserved heterogeneity could, 
indeed, lead to misleading policy implications. 
We account for the endogeneity of the adoption 
decision (that is, for the heterogeneity in the 
decision to adopt or not to adopt new technology 
and for unobservable characteristics of farmers 
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and their farm) by estimating a simultaneous 
equation model with endogenous switching 
by full information maximum likelihood 
estimation. 

The majority of research on SAI and agricultural 
land expansion has a global or national focus 
(Reardon et al., 1999; Maertens, 2006; Jayne et 

al., 2019). Others have less emphasis on specific 
theoretical frameworks to inform empirical 
study (Pretty, 1997; Rudel, 2020;  Haggar 
et al., 2021). The empirical evidence on the 
relationship between Sustainable agricultural 
intensification and agricultural expansion in 
Zambia is still scant, though similar studies 
have been done in other regions (Ceddia, 2013; 
Andersson Djurfeldt, 2020; Kansiime, 2022).
 
The objective of this study was to to estimate 
the causal effect relationship between SAI 
practices adoption and farmland expansion 
using the Endogenous Switching Regression 
model. Literature indicates that  SAI has great 
potential to mitigate agricultural farmland 
expansion through the application of practices 
that yield economic crop productivity levels 
within existing fields without farmers resorting 
to opening up new fields in virgin land in search 
of relatively fertile land.

This study therefore  aims to contribute to 
the literature on the causal-effect relationship 
between SAI practice adoption and farmland 
expansion among smallholder farmers based 
on the empirical analytical framework for 
Endogenous Switching Regression analysis. 
Assessing the impact of farm technology 
adoption can assist with setting priorities, 
providing feedback to the research programs, 
guide policy makers and those involved 
in technology transfer to have a better 
understanding of the way new technologies 
are assimilated and diffused into farming 
communities, and show evidence that clients 
benefit from the research products (Manyong 
et al., 2001). 

RESEARCH APROACH 
Study area. The study was conducted in two 
sites, namely Vulamukoko and Lukweta, that 
are located in Katete district of Eastern Province 
in Zambia. The district is located 32.0440oE, 
14.0584oS and stands at 1,060 m.a.s.l and is 
inhabited by a population of over 1.7 million 
people, with over 80% evident in rural areas 
(Zamstat, 2018). It has a geographical area 
coverage of 3,987 km2. The two study sites 
were purposively selected to represent one 
near a protected area (Lukweta) and one far 
from a protected area (Vulamukoko). Lukweta 
area borders Chindindendi and Mulodzela 
protected forest areas where farmers have 
been encroaching on with farming activities 
(Figure 1). The initial forest reserve area 
for Chindindendi forest reserve was about 
14,234,896 sq.m while that of Mulodzela was 
about 8,408,113 sq.m. 

These forest reserves are among the 491 
gazetted forest reserves in Zambia. Lukweta 
community has about 147 villages with a 
farm household population of over 6,500 farm 
families.  Vulamukoko area is about 30 km from 
the nearest forest protected area. The area has 
58 villages with a total of 3007 farm families.

Sample size and sampling procedure. A 
multi-stage random and non-random sampling 
procedure was used to select study households. 
The first stage involved purposive selection 
of communities based on the Sentinel project 
sites and close proximity to Chindindendi and 
Mulodzela protected forest areas and those 
which were further away. The second stage 
involved a probability sampling of study 
villages from the selected communities. A 
sample of 150 households from each of the 
two selected communities was selected giving 
a total sample size of 300 households for the 
study.
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Figure 1. Location of Katete district in Zambia and research study sites

The sample size was determined using the 
Taro Yamane sampling technique which is 
mathematically presented as: n = N/1+N(e)2. 
Where, n is the desired study sample size, N 
is the whole population under study, and e is 
the precision or sampling error which is usually 
0.10, 0.05 or 0.01 (Margin of error).

Research design,  data collection and 
analysis. A cross-sectional study was conducted 
during the period of January – April 2021. The 
study used a mixed research method approach 
that involved the collection of both quantitative 
and qualitative data using a semi-structured 
questionnaire. 

Qualitative methods involved focus group 
discussions with community leaders, key 
informant interviews with agricultural staff, as 
well as institutional heads for institutions that 

have a presence in the community. The study’s 
focus was on the analysis of the potential of 
sustainable agricultural intensification practices 
in mitigating agricultural expansion among 
smallholder farmers. Particularly, identifying 
SAI practices that have a significant influence 
on agricultural expansion. 

A structured questionnaire, literature review 
and a semi-structured checklist questionnaire 
where used in data collection. The thrust of 
the structured questionnaire was focused 
on household demographic characteristics, 
agricultural asset ownership, land characteristics 
and distribution, factors that lead to agricultural 
expansion, organizational affiliations, and 
training as well as data on sustainable agriculture 
intensification practices. A qualitative checklist 
was used to validate the information from the 
household interviews.
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This study sought to assess the causal effect of 
SAI adoption on farmers’ decisions to expand 
farmland. According to Hausman (1978) 
technology adoption in this case SAI practices 
adoption is either voluntary (endogenous) or 
some technologies are intended for a certain 
group of farmers hence the question of 
endogeneity of technology adoption arises. In 
this study, for instance, it is conceivable that 
productive farmers are much more willing to use 
SAI technologies. The source of endogeneity in 
this situation is self-selection for technology 
intervention, and if this is not taken into account, 
the genuine influence of the technology would 
be overstated. It is also likely that internal 
motivation may systematically differ between 
SAI adopters and non-adopters further leading 
to self-selection bias. Since the decision 
to adopt SAI is endogenously determined, 
the endogenous switching treatment effects 
regression (ESTER) approach was adopted 
to create a counterfactual framework under 
which the causal effect of SAI adoption on 
agricultural land expansion could be estimated.  
Under the ESTER framework, the adoption of 
SAI technologies was the switching parameter. 
The ESTER approach has been used in recent 
studies to determine the treatment effects when 
the treatment variable is endogenous (Asfew 
and Bekele, 2010; Kuntashula and Mungatana, 
2013;  Abdulai, 2014; Akpalu and Normanyo, 
2014).

We followed Lokshin and Sajaja (2004) 
approach to specify the ESTER model.  The 
ESTER is a two-step estimation framework 
where the first step involved estimating 
a selection equation (SAI adoption) that 
describes the technology adoption behaviors 
of maize farmers as they make the decision 
to adopt SAI practices or not. The selection 
equation was defined as in equation 1.

where Gi
* the unobserved SAI technology 

adoption and Gi is the observed technology 
adoption which is the dependent variable 
(SAI adoption) which equals one if the farmer 
has adopted and zero otherwise. α is a vector 
of parameters to be estimated, Zi is a set of 
observed farm and non-farm characteristics 
determining adoption and μi captures the random 
disturbances associated with SAI adoption. The 
first step facilitates the estimation of the inverse 
Mills ratio (Akpalu, 2014) which is used as a 
selection bias control variable in the second 
step of the ESTER analysis framework. 

The second part of the ESTER analysis 
framework is to estimate two expansion into 
forest land outcome continuous regression 
equations where farmers face the regimes 
of adopting or not adopting SAI practices 
(Equations 2 and 3) from which the drivers 
of agricultural land expansion were also 
determined.

where yi is agriculture agricultural land 
expansion in regimes 1 (adopt) and 2 (not adopt).  
Xi are vectors of exogenous variables (control 
variables) expected to influence agricultural 
land expansion, β is a set of parameters to be 
estimated, and εi is the random disturbance 
under respective regimes.

In this study, the main outcome, y, agricultural 
land expansion is continuous. The switching/
selection variable, which is to adopt SAI 
practices or not adopt is a binary variable. There 
may be non-zero covariances between the error 
terms of the adoption decision equation and the 
outcome equation as a result of self-selection 

𝐺𝐺𝑖𝑖
∗ = 𝛼𝛼𝛼𝛼𝑖𝑖 + 𝜇𝜇𝑖𝑖  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐺𝐺𝑖𝑖 = { 1 𝑖𝑖𝑖𝑖 𝐺𝐺𝑖𝑖

∗ > 0 
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒            (1) 

 

Regime 1 (Adopters):  

𝑦𝑦1𝑖𝑖 = 𝛽𝛽𝛽𝛽1𝑖𝑖 + 𝜀𝜀1𝑖𝑖    𝑖𝑖𝑖𝑖 𝐺𝐺𝑖𝑖 = 1              (2) 

Regime 0 (Non-adopters):  

𝑦𝑦2𝑖𝑖 = 𝛽𝛽𝛽𝛽2𝑖𝑖 + 𝜀𝜀2𝑖𝑖    𝑖𝑖𝑖𝑖 𝐺𝐺𝑖𝑖 = 0             (3) 
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into adopters or non-adopter category. This 
suggests that sample selection bias would affect 
the βn and βo ordinary least squares (OLS) 
estimates since the error terms in Equation 
(2) have non-zero expected values when 
conditional on the sample selection criterion 
(Lee 1978; Maddala, 1983). Lee (1978) views 
sample selection as a problem with a missing 
variable. The trivariate normal distribution with 
zero mean and non-singular covariance matrix 
stated in equation 4 is assumed to apply to the 
error terms εc, εn, and ε0. 

where σc
2 is the variance of the error term εc 

in the criterion equation (i.e., technology 
adoption); σn

2 is the variance of εn; σn
2 is the 

variance of ε0; σ_no is the covariance of εn and 
ε0; σnc is the covariance of εn and εc; and σoc is 
the covariance of ε0 and εc. It can be assumed 
that σ2  = 1, since α is estimable only up to a 
scalar factor. In this analytical framework, the 
study similar methods that were applied in 
other studies (Johnson and Kotz, 1970; Abdulai, 
2014). Given these assumptions, according to 
these past studies, the expected values of the 
truncated error terms (εn  |Gi  = 1) and (εo  |Gi  = 
0) are then given as in equations 5 and 6:

where Ø and ɸ are the probability density 
and cumulative distribution functions of the 
standard normal distribution, respectively. 
The ratio of Ø and Φ ɸ evaluated at β'α is the 
inverse Mills ratio [λn and λo in Equations (4) 
and (5)]. The terms λn and λo can be treated as 
missing variables in Equation (2) to account for 
selection bias.

The estimation of the model proceeds in two 
stages. The first stage involves a probit regression 
to determine the probability of adoption and 
thus estimation of the parameter β given in 
equation [1]. These estimates are then used to 
calculate the selectivity terms (λn, λo) according 
to equations [4] and [5]. The drawback of this 
two-step approach is that it generates residuals 
that are heteroskedastic and as a result cannot 
be used to obtain consistent standard errors 
without cumbersome adjustments (Lokshin and 
Sajaia, 2004). The full information maximum 
likelihood method suggested by Lokshin and 
Sajaia (2004) overcomes the problem through 
a simultaneous estimation of the two equations, 
that is, the adoption and outcome equations. Of 
particular interest are the signs and significance 
levels of the correlation coefficients (ρ) from 
the estimates. As indicated previously, these 
are the correlations of the error terms of the 
outcome and choice equations (corr(ε,u) = ρ). 
Specifically, there is endogenous switching, 
if either ρAε (σAε/σA σε) or ρNε (σNε/σA σε) is 
significantly different from zero, which would 
result in selection bias. If ρ>0, this would imply 
negative selection bias, indicating that farmers 
with below average yields and net returns are 
more likely to adopt the technology. On the 
other hand, ρ<0 implies positive selection bias, 
suggesting that farmers with above average 
yields and net returns are more likely to adopt 
the technology.

In the second stage of the ESTER analysis 
framework, these predicted variables are added 
to the appropriate equation in (2) to yield 
equation 7.

where ε_1i and ε_2i have zero conditional 
means. These residuals are, however, 
heteroscedastic (Maddala, 1983). The 
coefficients of the variables λn and λo provide 
estimates of the covariance terms σnc and σoc, 

𝑐𝑐𝑐𝑐𝑐𝑐(𝜀𝜀𝑛𝑛, 𝜀𝜀0, 𝜀𝜀𝑐𝑐 = (
𝜎𝜎𝑛𝑛2 𝜎𝜎𝑛𝑛𝑛𝑛 𝜎𝜎𝑛𝑛𝑛𝑛
𝜎𝜎𝑛𝑛𝑛𝑛 𝜎𝜎𝑜𝑜2 𝜎𝜎𝑜𝑜𝑜𝑜
𝜎𝜎𝑛𝑛𝑛𝑛 𝜎𝜎𝑜𝑜𝑜𝑜 𝜎𝜎𝑐𝑐2

)              (4) 

 

𝐸𝐸(𝜀𝜀𝑛𝑛 |𝐺𝐺𝑖𝑖  =  1) = 𝐸𝐸(𝜀𝜀𝑛𝑛|𝜀𝜀 > −𝛽𝛽′𝛼𝛼 = 𝜎𝜎𝑛𝑛𝑛𝑛
∅(𝛽𝛽′𝛼𝛼/𝜎𝜎)
𝛷𝛷(𝛽𝛽′𝛼𝛼/𝜎𝜎) ≡ 𝜎𝜎𝑛𝑛𝑐𝑐𝜆𝜆𝑛𝑛,    

 (5) 

𝐸𝐸(𝜀𝜀𝑛𝑛 |𝐺𝐺𝑖𝑖  =  0) = 𝐸𝐸(𝜀𝜀𝑛𝑛|𝜀𝜀 ≤ −𝛽𝛽′𝛼𝛼 = 𝜎𝜎𝑜𝑜𝑜𝑜
∅(𝛽𝛽′𝛼𝛼/𝜎𝜎)

1−𝛷𝛷(𝛽𝛽′𝛼𝛼/𝜎𝜎) ≡ 𝜎𝜎𝑜𝑜𝑜𝑜𝜆𝜆𝑜𝑜,    

 (6) 

 
𝑦𝑦1𝑖𝑖 = 𝛽𝛽𝛽𝛽1𝑖𝑖 + 𝜎𝜎𝑛𝑛𝑛𝑛𝜆𝜆𝑛𝑛 + 𝜀𝜀1𝑖𝑖    𝑖𝑖𝑖𝑖 𝐺𝐺𝑖𝑖 = 1 and       

𝑦𝑦2𝑖𝑖 = 𝛽𝛽𝛽𝛽2𝑖𝑖 + 𝜎𝜎𝑜𝑜𝑜𝑜𝜆𝜆𝑜𝑜 + 𝜀𝜀2𝑖𝑖    𝑖𝑖𝑖𝑖 𝐺𝐺𝑖𝑖 = 0 (7) 
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respectively. Since the variables λn and λo have 
been estimated, however, the residuals ε1i and 
ε2i  cannot be used to calculate the standard 
errors of the two-stage estimates. Studies 
applying endogenous switching have followed 
Maddala (1983) procedure for estimating the 
correct variance–covariance matrix. However, 
this procedure requires potentially cumbersome 
adjustments to derive consistent standard errors, 
because the correct variance–covariance matrix 
of the estimates is very complicated (Lee, 
1978). Freeman et al. (1998) used weighted 
least squares to account for heteroscedastic 
errors; however, the use of weighted least 
squares is limited only to situations where the 
exact form of heteroscedasticity is known, 
which is rarely the case. A more efficient 
version of the endogenous switching model 
is estimated by full information maximum 
likelihood (FIML) method (Greene 2000; 
Lokshin and Sajaia 2004). The FIML method 
simultaneously estimates the probit criterion or 
selection equation and the regression equations 
to yield consistent standard errors. Given the 
assumption of trivariate normal distribution 
for the error terms, the logarithmic likelihood 
function for the system of Equations (1) and (2) 
can be given as (Lokshin and Sajaia, 2004).

where f and F are the probability density 
and cumulative distribution functions of the 
standard normal distribution, respectively; 
wi is an optional weight for observation i (i = 
1,2,...,N) and ρnc  = σnc/σn σc is the coefficient 
of correlation between εn and εc and ρoc  = σoc/
σo σc is the coefficient of correlation between 
εo and εc. To make sure the estimated ρnc and ρoc 

are bounded between −1 and 1 and the estimated 
σn and σc are always positive, the maximum 
likelihood directly estimates ln σn, ln σc, and a 
tanh ρjc where a tanh ρjc=  ½  ln [(1 + ρjc)/(1 - 
ρjc)]. 

The signs of the correlation coefficients ρnc 
and ρoc have economic interpretations (Fuglie 
and Bosch, 1995). If ρnc and ρoc have alternate 
signs, then individuals adopt new technology 
on the basis of their comparative advantage: 
those who adopt have above-average returns 
from adoption and those who choose not to 
adopt have above-average returns from non-
adoption. The opposite is true if the coefficients 
have the same sign, which denotes hierarchical 
sorting: adopters benefit from adopting since 
their returns are above average whether they 
do so or not, and non-adopters benefit from 
not adopting because their returns are below 
average in both cases. The selection equation 
was used to fit the model since the outcome 
variable was dichotomous in nature. 

RESULTS
Socio-economic characteristics of the 
study population by SAI adoption. Study 
findings show that there was a significant 
statistical difference (at 95% confidence level) 
between households in terms of adoption of 
SAI practices and involvement in farmland 
expansion. Results reveal that 29 percent of 
the sampled farm households were involved in 
farmland expansion and were also adopters of 
SAI practices. On the contrary, 57 percent were 
non-adopters of SAI practices but had expanded 
their farmland in the study period 2015-2020.

Access to physical assets reveals a higher level of 
cattle ownership among SAI practices adopters 
(77 percent) compared to 61 percent ownership 
for the non-adopters of SAI. Similarly, results 
reveal statistically significant differences in 
terms of agricultural land ownership with SAI 
adopters owning more land (5.44ha) compared 
to non-adopters who own an average of 4.97ha. 

𝑙𝑙𝑙𝑙𝑙𝑙 =∑{
𝑁𝑁

𝑖𝑖=1
𝐺𝐺𝑖𝑖𝑤𝑤𝑖𝑖[𝑙𝑙𝑙𝑙𝑙𝑙 (

(𝛽𝛽𝑖𝑖′𝛼𝛼 + 𝜌𝜌𝑛𝑛𝑛𝑛(𝑌𝑌𝑛𝑛𝑛𝑛 − 𝑋𝑋𝑛𝑛𝑛𝑛′ 𝛽𝛽)/𝜎𝜎𝑛𝑛)
√1 − 𝜌𝜌𝑛𝑛𝑛𝑛2

) + 

ln⁡(𝑓𝑓((𝑌𝑌𝑛𝑛𝑛𝑛 − 𝑋𝑋𝑛𝑛𝑛𝑛′ 𝛽𝛽)/𝜎𝜎𝑛𝑛)/𝜎𝜎𝑛𝑛)] + 

(1 − 𝐺𝐺𝑖𝑖)𝑤𝑤𝑖𝑖[ln⁡(1 − F (
(𝛽𝛽𝑖𝑖′𝛼𝛼 + 𝜌𝜌𝑜𝑜𝑜𝑜(𝑌𝑌𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑜𝑜𝑜𝑜′ 𝛽𝛽)/𝜎𝜎𝑜𝑜)

√1 − 𝜌𝜌0𝑐𝑐2
) +⁡ 

ln⁡(𝑓𝑓(𝑌𝑌𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑂𝑂𝑂𝑂′ 𝛽𝛽)/𝜎𝜎𝑜𝑜)/𝜎𝜎𝑜𝑜)]} 
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Results show that 69 percent of the non-SAI 
adopting households were expanding their 
farmlands due to limited cash to purchase 
inorganic fertilizers compared to 56 percent 
for the SAI adopters. This finding collaborates 
with those of Lee (2005) who reported that 
smallholder farmers are likely to adopt natural 
resource management interventions such as 
SAI practices only when the additional benefits 
from such investments outweigh the added 
costs. Climate change is another variable that 

was reported to be contributing to farmland 
expansion. Results showed statistically 
significant differences with 10 percent of 
the non-adopters of SAI practices reporting 
engagement in farmland expansion due to 
climate change as opposed to 7 percent of the 
adopters. Interestingly, a higher percentage (86 
percent) of the farm households that received 
agricultural extension training were involved in 
farmland expansion compared to 50 percent for 
the non-adopters of SAI practices. 

Table 1. Definitions and summary statistics of the variables used in the analysis, by 
household SAI adoption

Definition SAI Adopters (n= 
139)

SAI non-adopters 
(n= 109)

P-value 
(α = 
0.05)

Mean Std. Dev. Mean Std. Dev.

Dependent variables

Adoption of SAI Practices

Field area associated with expansion of 
farmland between 2015 – 2020 in Ha

1.31 2.546 2.07 2.3029 0.016**

Independent variables

Household size 6.54 2.141 6.54 2.810 0.996

Number of household members between 
16-59 years old

2.89 1.413 3.07 1.631 0.350

Age of household head in years 43.83 11.196 44.07 13.102 0.874

Years of farming 20.64 11.307 20.55 12.144 0.952

Household head ability to read and write 
(yes=1, 0=no)

0.80 0.403 0.70 0.462 0.066

Household ownership of cattle (=1 if 
household owns cattle, =0 if does not own 
cattle)

0.77 0.422 0.61 0.489 0.008**

Total farmland size own (ha) 5.44 5.711 4.97 2.871 0.009**

Total cropped field size in the study year 
2019/20 season (ha)

3.89 2.727 3.169 2.136 0.025**

Expanded farmland due to declining soil 
fertility (1=yes, 0 otherwise)

0.76 0.435 0.82 0.385 0.417

Expanded farmland due to some crops that 
require relatively new fields to perform 
well (1=yes, 0 otherwise)

0.44 0.502 0.61 0.491 0.084
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Expanded farmland due to high 
requirement for higher fertilizer dosage in 
old fields (1=yes, 0 otherwise)

0.54 0.505 0.71 0.458 0.074

Expanded farmland due to lack of adoption 
of other sources of fertility improvement 
methods (1=yes, 0 otherwise)

0.32 0.471 0.65 0.482 0.001**

Expanded farmland due to limited cash to 
purchase fertilisers (1=yes, 0 otherwise)

0.56 0.502 0.69 0.465 0.173

Expanded farmland due to increasing 
demand for farmland resulting from a 
growing family size (1=yes, 0 otherwise)

0.56 0.502 0.29 0.458 0.006**

Household member(s) belonging to 
any formal or informal farmer group/
association (1=yes, 0 otherwise)

0.91 0.282 0.54 0.501 0.000**

Household member(s) received any form of 
agricultural extension training between the 
period 2015 - 2020 (1=yes, 0 otherwise)

0.86 0.345 0.50 0.502 0.000**

**Significant at 5%. 	 Source: Authors. P-values refer to two-tailed t-tests

Endogenous Switching Regression Models 
Probit model estimates of SAI adoption. The 
empirical results for the probability of adopting 
SAI show significant and positive effects of 
a unit increase in total cropped area, farmer 
affiliation to farmer associations and farmer 
participation in agricultural extension training 
on sustainable agricultural intensification 
practices adoption. The estimation coefficient 
for agricultural farmland expansion variable is 
negative and significant at 95 percent confidence 
level. This finding implies that a unit increase 
in farmland expansion results in an 18.6 percent 
point decrease in the probability of a farmer to 
adopt SAI practices. Cropped land size, which 
is the main source of livelihood for farmers, 
has a positive and significant impact on the 
probability of adopting SAI practices. The 
marginal effects analysis show that a small unit 
increase in crop area cultivated from the mean 
led to a 0.03 percentage points increase in the 
probability of deciding to adopt SAI practices 
holding all other factors constant, a finding that 
is consistent with previous studies using farm 

size as a determinant of technology adoption 
(Akudugu, 2012; Nyariki, 2012).
 
The coefficient of farmer affiliation to farmer 
associations is also positive and significantly 
different from zero, suggesting that farmer 
groups play an important role in technology 
diffusion as supported by other studies (Norton 
et al., 2020). A unit increase in farmer affiliation 
to farmer association increases the probability 
of SAI adoption by 31.9 percent holding 
all other factors constant. The agricultural 
extension training variable is positive and 
statistically significant in the probit model 
results, indicating that farmers with contacts 
to extension agents are more likely to adopt 
SAI practices. This result demonstrates 
the importance of knowledge in lowering 
ambiguity surrounding agricultural practices. 
The marginal effects analysis results indicate 
that a unit increase in agricultural extension 
training received by a farmer increases the 
probability of adopting SAI practices by 32.9 
percent.
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Table 2. Probit model estimates of SAI adoption

Variable Coefficients Marginal effects Std. Err.

Household engaged in expansion 
of farmland Between 2015-2020 * 

-0.471**(-2.44) -0.186** 0.075

Household size -0.028(-0.52) -0.011 0.021

Number of household members 
between 16-59 years old 

-0.089(-1.2) -0.035 0.029

Education level   0.137(1.12) 0.054 0.048

Number of cattle owned* -0.104(-0.51) -0.041 0.080

Household ownership of a magoye 
ripper*   

-0.065(-0.27) -0.026 0.094

Total Cropped field    0.089**(2.12) 0.035** 0.017

Household member belonging 
to any formal or informal farm 
association*  

0.827**(3.24) 0.320** 0.092

Household members received any 
form of agricultural extension 
training between 2015-2020*   

0.850**(3.81) 0.329** 0.081

_cons -0.985**(-2.31)

Probit regression                               Number of obs.    = 246
                                                          Wald chi2(9)        = 68.89 
                                                          Prob > chi2           = 0.0000

Notes: ** represents 5% significant level.  Figures in parentheses are z-values.
(*) dy/dx is for discrete change of dummy variable from 0 to 1.

Table 3. Continuous switching regression results for the area under expansion for adopters 
and non-adopters without and after controlling for selection bias

Area under 
Expansion

Without controlling for 
selection bias

Adopters Non-adopters

Coef. Robust 
Std. Err.

Coef. Robust Std. 
Err.

Coef. Robust Std. 
Err.

Household size 0.031 0.036 0.031(-0.85) 0.043 -0.017(-0.27) 0.063

Age of 
household head

-0.034** 0.016 -0.010(-0.76) 0.013 -0.026(-1.63) 0.016

Years of 
farming

0.011 0.015 0.013(1.17) 0.011 -0.006(-0.30) 0.020

Level of 
Education 

-0.396** 0.174 -0.119(-0.89 0.134 -0.454(-1.52) 0.298

Ownership of 
work oxen

0.152 0.217 -0.032(-0.25) 0.130 -0.560(-1.45) 0.387

Declining soil 
fertility

2.140** 0.598 0.979(1.42) 0.689 2.174*(2.57) 0.844
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Some crop 
requirements 
for fertile new 
fields

1.055 0.579 3.324*(3.15) 1.055 0.884(1.39) 0.635

Higher 
fertiliser 
dosage for old 
fields

-0.586 0.614 -4.660*(-3.73) 1.251 0.154(0.22) 0.696

Non-adoption 
of alternative 
fertiliser 
sources

-1.887** 0.565 -3.616*(-6.35) 0.570 -1.549*(-2.16) 0.716

Limited cash 
to purchase 
fertilisers

2.001** 0.660 5.932*(7.58) 0.783 0.468(0.69) 0.681

Growing 
family size

2.001** 0.423 2.285*(4.42) 0.517 1.488(1.87) 0.794

Ease access to 
forest areas

1.011 0.801 -1.312(-1.27) 1.031 1.645*(2.57) 0.641

Farm size 0.063** 0.028 0.006(0.33) 0.017 0.292*(3.88) 0.075

Total land size 
cultivated

0.116 0.071 0.104(1.73) 0.060 0.263(1.48) 0.178

Age (years) of 
maize field

0.003 0.007 -0.0163*(-2.29) 0.007 0.023(1.68) 0.014

Household 
membership 
to farmer 
associations

0.353 0.276 1.284*(2.06) 0.622 0.729(0.90) 0.812

Participation 
in agricultural 
extension 
training

-0.272 0.280 0.964(1.47) 0.656 0.907(0.83) 1.094

m11 1.281(1.20) 1.067

m00 1.542(0.92) 1.668

_cons 1.158** 0.608 -1.889(-1.16) 1.623 0.707(0.89) 0.797

R-squared 0.6752 0.8558

Factors associated with smallholder 
farmland expansion. A comparison of the 
factors that influenced agricultural farmland 
expansion among adopter and non-adopter 
farm households was made using a continuous 
switching regression for the area under 
expansion while controlling for selection 
bias by including the inverse Mills ratio. The 

results in Table 3 indicate that declining soil 
fertility is an important factor that contributes 
to farmland agricultural expansion among non-
adopters of SAI practices. The positive and 
significant coefficient of the variable suggests 
that non-adoption coupled with limited or lack 
of application of sustainable farming practices 
that increase or maintain soil fertility may 
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increase the probability of farmer engagement 
in agricultural expansion. 

The variable on some crop requirement for 
relatively new fertile fields shows a positive 
and significant coefficient among adopters 
of SAI practices. This result shows that the 
adopter farm households will increase the 
probability of expanding into new fields if they 
intend to grow a new crop that performs well 
in relatively new and fertile land. The results 
also show a negative and significant coefficient 
for the adopters for the higher fertilizer 
dosage requirement in the old fields variable. 
This implies that, as the field gets older, the 
adopters reduce the quantity of fertilizers they 
apply to the field either because the levels of 
soil fertility become stable or the fields do not 
decline to a level where they negatively impact 
crop production. 

The variable on farmland expansion due to the 
lack of adoption of other sources of fertility 
improvement methods has a negative and 
significant coefficient for both adopter and 
non-adopter farm households. Therefore, the 
result indicates that the less access farmers 
have to other sources for fertility improvement, 
the higher the probability of them resorting to 
expanding their fields into virgin land. This is 
expected especially in view of the high cost of 
inputs particularly inorganic fertilisers that are 
beyond the reach of most farmers. Additionally, 
the coefficient for the variable on limited cash 
to purchase fertilisers is positive and significant 
for the adopters. This finding implies that 
despite a farmer’s adoption of SAI practices, the 
more they face financial challenges to purchase 
inorganic fertilisers, the higher the chances 
that they will expand into new virgin land in 
order to maintain a higher crop productivity. 
The growing family size among the adopters, 
was another variable that show positive and 
significant impact on farmland expansion. 

Therefore, the bigger the family size, the 
higher the probability of resorting to expansion. 
The coefficient for easy access to forest areas 
among the non-adopter have the expected 
positive sign and is significantly different from 
zero, indicating that the closer a farmer is to the 
protected forest area, the higher the probability 
of them encroaching and opening up new land. 
On the other hand, the coefficient for the total 
farmland size owned variable is positive and 
significantly different from zero, suggesting 
that the larger the farm size, the higher the 
probability that a non-adopting farm household 
will expand. The coefficient for the age of the 
maize field among adopters was negative and 
significantly different from zero. This finding 
suggests that despite an increase in the age of 
the maize field, the probability of expanding 
the field reduces among the adopters. This 
result could be attributed to the application 
of sustainable agricultural practices that 
maintain soil fertility of the fields irrespective 
of the age hence reduces the chances of a SAI 
adopter farmer to open up new and virgin 
land. Participation in farmers’ associations 
has a positive and significant impact on 
farmland expansion for adopters. This finding 
corroborates with Durlauf and Fafchamps 
(2005), who indicated in their study that social 
networks may be crucial in reducing search and 
information costs associated with the adoption 
of new technologies. 

Treatment effect of SAI adoption on 
expansion. Table 4 shows the results of the 
expected land associated with expansion for 
adopters and non-adopters of SAI practices 
as well as their respective counterfactuals. 
The results revealed that the expected Food 
Consumption Scores (FCSs) of adopters and 
non-adopters were 53.87 and 66.92 respectively. 
Comparing (a) and (c) in Table 4 reveals that 
the adopters of SAI would have expanded land 
for agricultural practices by 0.61 hectares had 
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they not adopted SAI practices. Therefore, 
the treatment, (i.e., adoption of SAI practices) 
reduced expected land expansion by 0.61 
hectares. Comparing (b) and (d), non-adopters 

would have reduced land expansion by 0.88 
hectares had they chosen to adopt SAI practices 
(significant at 1% level of significance).  

Table 4. Treatment effect of SAI adoption on farmland expansion

Regime Decision making regime Treatment effect T-Statistic

Adopt Not adopt

Adopters (a) 1.262397 (c) 1.876968 -0.61457 -2.1449

Non-adopters (d) 1.273465 (b) 2.156383 -0.88292 -2.7896

DISCUSSION
The higher percentage of the farm households 
that received agricultural extension training 
and also involved in farmland expansion 
among adopters of SAI practices could be 
attributed to the need to expand production and 
increased farm income mainly as a result of 
enhanced agricultural productivity that results 
from improved farmer knowledge on farming 
practices through extension training. A similar 
study in Ghana by Danso-Abbeam (2018) also 
reported that participants in the Association of 
Church-based Development NGOs (ACDEP) 
agricultural extension programme had 
larger farm sizes than their non-participants 
counterparts. Members of such extension 
programmes are encouraged to consider 
their farms as a business entity rather than a 
cultural way of life and are, therefore, poised 
to achieve higher output through expansion and 
productivity.

The present findings showed that farmers 
with contacts to extension agents were more 
likely to adopt SAI practices. Agricultural 
extension, as previously noted, frequently 
serves as a significant information source on 
technological advancements in the agricultural 
sector in sub-Sahara Africa, and as such, can 
play a significant role in technology adoption. 
Our findings therefore collaborate those of 

other studies (Alene, 2006; Altalb, 2015) which 
indicated that agricultural extension is the basis 
for the transfer of agricultural technologies to 
farmers and to persuade farmers to adopt those 
agricultural techniques.

The negative relationship between the level 
of education of the farmer and farmland 
expansion, suggests that more-educated farmers 
are less likely to resort to expanding land under 
cultivation as an option to maintain productivity 
but instead find other more sustainable options. 
This result supports the idea that education is 
crucial for assisting farmers in making decisions 
regarding the adoption of new innovations and 
technology (Huffman, 2001).

The coefficient for increasing demand for 
farmland resulting from the growing family size 
variable is positive and significantly different 
from zero, suggesting that larger families will 
demand more land for cultivation to meet 
the household food needs as well as land for 
the other family members who may require 
to establish their own fields as they become 
socially and economically independent. This is 
perhaps not surprising, given the prominence 
of population in the broader review of the 
literature by Jellason (2021) which report 
that, population dynamic is a key underlying 
driver of agricultural expansion at both site 
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and country levels. The coefficient for the 
total land size owned variable is positive and 
significantly different from zero. To augment 
this finding, Lawrence (2014) asserts that 
the global footprint of agriculture is likely to 
increase markedly this century as the global 
extent of cropland is currently expanding faster 
than at any time in the past 50 years and this 
will also be influenced by the total land owned 
at farm household level.

Findings  from the study reveal that declining  
soil fertility is directly associated with 
an increase in the probability of farmer  
engagement in agricultural farmland expansion. 
This finding is in harmony with other studies 
(Chauvin, 2012; Epule, 2022) which indicate 
that in Sub-Sahara Africa, agriculture is marked 
by low productivity with little application 
of science and technology and farmers often 
resort to increasing the area under production 
by opening up of relatively fertile new forest 
fields in a bid to increase production. The 
limited financial resources among smallholder 
farm households has also been a push factor for 
agricultural farm expansion. Other researchers 
(Mwangi, 1996) indicate that Sub-Saharan 
Africa consumes very little fertilizer and needs 
policy help in the form of subsidies and credit 
to make the input more cheaper as they expand 
their crop area under production to satisfy the 
need for food security, corroborate this finding.

CONCLUSION
We estimated the causal effect of SAI practices 
adoption on agricultural farmland expansion 
among smallholder farm households in 
Katete district of Zambia. The study utilized 
endogenous switching regression and 
propensity score matching methods to assess 
the robustness of the results. This helped 
in estimating the true welfare effect of SAI 
practices adoption by controlling for the problem 
of selection bias. The causal impact estimation 
reveals that the adoption of SAI practices 
reduced expected land expansion on one hand 

while the non-adopters of SAI practices would 
have reduced land expansion had they chosen 
to adopt SAI practices. The findings also 
indicate that increasing area under cropping, 
farmer affiliation to farmer associations, and 
farmer participation in agricultural extension 
training are positive precursors to increasing 
the probability of adopting SAI practices at the 
farm level. Additionally, the more educated a 
farmer is coupled with older age reduces the 
probability of engaging in farmland expansion. 
These two variables point to the role and 
importance of increased farming experience 
and knowledge in mitigating the high rate of 
agricultural farmland expansion. This finding 
suggests that the mitigation of agricultural 
productivity challenges through technology 
dissemination should be coupled with farmer 
education. On the other hand, conventional 
factors of production such as limited cash 
to purchase fertilizers, increasing demand 
for farmland resulting from the growing 
family size, total land size owned, and the 
declining soil fertility, as expected, positively 
and significantly contributed to agricultural 
farmland expansion in an effort to maintain high 
crop productivity and production. The results 
from this study, therefore, generally confirm 
the potential positive impact of SAI technology 
adoption in reducing agricultural farmland 
expansion among smallholder farmers which 
translates into increased conservation of natural 
resources, especially forests.
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