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ABSTRACT 

This study presents an automated deep learning-based classification model for 

aflatoxin detection in groundnuts, addressing the limitations of conventional 

manual inspection methods, which are often time-intensive and error-prone. 

Leveraging the Inception-ResNet-V2 deep learning architecture, the model 

classifies groundnuts into four distinct categories: healthy, moldy, pest-

infested, and those exhibiting physiological disorders. A comprehensive dataset 

comprising 226 healthy, 236 moldy, 191 pest-infested, and 160 physiological 

disorder samples was utilized for training, validation, and testing. Model 

performance was evaluated using multiple metrics, including accuracy, 

precision, recall, F1-score, and the area under the receiver operating 

characteristic (ROC) curve (AUC). The proposed model achieved an overall 

accuracy of 99.29%, with precision and recall values of 100% and 98.44%, 

respectively. Notably, the moldy category exhibited an AUC of 1.00, 

underscoring the model’s exceptional capability in distinguishing visual 

patterns and automating classification tasks. Despite these good results, the 

study highlights the need for future research to incorporate a broader range of 

agricultural products to enhance model generalizability. The deep learning 

model developed improves aflatoxin detection, reducing reliance on subjective 

manual inspections and enhancing food safety practices. This research offers a 

novel AI-driven solutions in agricultural quality assessment and food safety 

management. 
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RÉSUMÉ  

Cette étude propose un modèle automatisé de classification fondé sur le Deep-

Learning pour la détection des aflatoxines dans les arachides, afin de passer les 

limites des inspections manuelles conventionnelles, souvent longues et sujettes à 

l’erreur. En s’appuyant sur l’architecture Inception-ResNet-V2, le modèle classe les 

arachides en quatre catégories : saines, moisies, infestées par des ravageurs et 

présentant des désordres physiologiques. Un ensemble de données conséquent, 

comprenant 226 échantillons sains, 236 moisies, 191 infestés et 160 présentant des 

désordres physiologiques, a servi à l’entraînement, à la validation et au test. La 

performance a été évaluée à l’aide de plusieurs métriques : exactitude, précision, 

rappel, score F1 et aire sous la courbe ROC (AUC). Le modèle atteint une exactitude 

globale de 99,29 %, avec une précision de 100 % et un rappel de 98,44 %. 

Notamment, la catégorie « moisie » présente une AUC de 1,00, soulignant la 

capacité du modèle à distinguer des motifs visuels et à automatiser la classification. 

Malgré ces résultats probants, l’étude appelle à des travaux futurs intégrant un 

spectre plus large de produits agricoles pour améliorer la généralisabilité. Le modèle 

proposé renforce la détection des aflatoxines, réduit la dépendance aux inspections 

subjectives et améliore les pratiques de sécurité sanitaire des aliments ; il constitue 

une solution innovante pilotée par l’IA pour l’évaluation de la qualité et la gestion 

de la sécurité des denrées. 

 

Mots clés:  aflatoxine, apprentissage profond, sécurité sanitaire des aliments, 

arachides , Inception-ResNet-V2. 

 

 

INTRODUCTION 

Aflatoxins are highly toxic secondary 

metabolites produced primarily by molds 

such as Aspergillus flavus and Aspergillus 

parasiticus. These toxins pose a serious 

threat to food security and public health 

globally, particularly in tropical and 

subtropical regions where high humidity 

and temperatures foster fungal 

proliferation. Susceptible crops include 

maize, sorghum, groundnuts (peanuts), and 

various cereals and nuts (Schrenk et al., 

2020). Recognized for their hepatotoxicity, 

aflatoxins are classified as Group 1 

carcinogens by the International Agency 

for Research on Cancer (IARC), marking 

them as significant contributors to liver 

cancer in both humans and animals.  

 

The global burden of aflatoxin 

contamination extends beyond public 

health to economic development and food 

safety. According to the Food and 

Agriculture Organization (FAO), 

approximately 25% of the world’s food 

crops are annually  

 compromised by aflatoxins, leading to 

substantial economic losses and persistent  

food insecurity (Eskola et al., 2020). For 

low- and middle-income countries 

(LMICs), including Uganda, weak food 

safety frameworks and limited 

enforcement mechanisms amplify the 

crisis (Meneely et al., 2023). These 

challenges mirror findings from ICT-

enabled agricultural initiatives that 

emphasized the importance of context-

specific technological models to support 

rural communities (Mirembe et al., 2016).  

 

In Uganda, groundnuts (Arachis hypogaea) 

are both a dietary staple and a critical source 

of income for smallholder farmers (Okello 

et al., 2010, 2013). However, they remain 

highly vulnerable to aflatoxin 

contamination. Recent studies show that 

groundnut samples from different Ugandan 

regions often exceed safe aflatoxin levels 

(Mwesige et al., 2023).                                                                                                                                                                                                                  
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Poor postharvest practices, inadequate 

storage, and favorable climatic conditions 

contribute to this high contamination risk 

(Pandey et al., 2020). Addressing these 

issues calls for contextually relevant 

technological models, such as those piloted 

to enhance farmer knowledge-sharing and 

risk reduction (Mwesigwa et al., 2016).  

 

Given the magnitude of health risks and 

economic implications, early detection of 

aflatoxins is vital. Traditional methods 

such as enzyme-linked immunosorbent 

assays (ELISA) and thin-layer 

chromatography, while accurate, are 

resource-intensive, demanding specialized 

equipment and trained personnel (Akullo 

et al., 2023). Recent innovations show 

increasing interest in automated systems 

that leverage artificial intelligence (AI), 

particularly machine learning (ML) and 

deep learning (DL), as more accessible, 

scalable, and cost-effective alternatives 

(Mohanty et al., 2016; Balaji et al., 2023) 

which demonstrate the feasibility of 

adapting high-tech frameworks in 

constrained settings.  

 

Deep learning, a subset of machine 

learning, has achieved significant success 

in image classification across various 

fields, including agriculture (Sharma et al., 

2021). Convolutional neural networks 

(CNNs), in particular, have shown 

effectiveness in detecting patterns and 

anomalies in images, which are often 

imperceptible to the human eye, achieving 

high accuracy in detecting fungal 

infections in crops using image data. 

  “This study represents a pioneering effort in 

using deep learning to categorise groundnut 

quality into distinct classes healthy, mouldy, 

pest-infested, and physiological disorder 

aiming to offer a rapid and scalable solution for 

aflatoxin detection.” 

 

By training a CNN on labelled images of these 

categories, we aimed to develop a reliable and 

scalable model capable of detecting aflatoxins 

and other defects in groundnuts (Sadimantara 

et al., 2024). This approach provides a faster 

and more accessible alternative to traditional  

 

methods, with the potential for implementation 

in resource-constrained settings, where rapid 

and accurate aflatoxin detection is vital to 

ensuring food security and public health.   

MATERIALS and METHODS   

Groundnuts were selected as the primary 

crop for this study due to their nutritional 

importance, economic relevance, and high 

susceptibility to aflatoxin contamination, 

particularly in Uganda. As a staple legume 

grown extensively by smallholder farmers, 

groundnuts are frequently subjected to 

poor post-harvest handling and inadequate 

storage conditions, which facilitate mold 

growth and aflatoxin production ( Okello 

et al., 2015; Akullo et al., 2023). 

According to Mirembe et al. (2016), the 

high risk of aflatoxin exposure associated 

with groundnuts, coupled with the crop’s 

substantial economic importance, 

positions groundnuts as an ideal candidate 

for AI-based quality detection 

interventions particularly within low-

resource agricultural settings.   

To address the image classification task, 

this study employed the Inception-ResNet-

V2 deep learning architecture, which 

synergistically combines inception 

modules designed to capture multiscale 

features with residual connections that 

ensure stable training across very deep 

networks (Szegedy et al., 2017). This 

hybrid architecture provides enhanced 

learning capacity for distinguishing subtle 

visual features, making it particularly 

appropriate for detecting nuanced 

differences in agricultural products 

(Kumar et al., 2021; Pai et al., 2024). The 

model’s application in postharvest analysis 

is consistent with the growing use of 

intelligent systems in rural 

 

 

development and food safety surveillance 

(Mirembe et al., 2016). This trend has been 

highlighted in recent studies, emphasizing 
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the relevance of AI-driven approaches in 

enhancing agricultural outcomes in low-

resource settings.  

 

Groundnut images were categorized into 

four quality classes based on expert 

agronomic annotation and recognized 

postharvest inspection guidelines: healthy, 

moldy, pest-infested, and physiological 

disorders (Akullo et al., 2023). Healthy 

kernels showed no defects; moldy ones 

exhibited fungal growth; pest-infested 

samples presented insect-related damage,  

while physiological disorders reflected 

abiotic issues such as shriveling or internal 

discoloration. These classification 

categories align with conventional 

postharvest quality control standards and 

provide a robust basis for automated 

detection systems. 

 

The proposed model is intended for 

deployment at the post-harvest stage, 

specifically during sorting and grading 

processes at collection centers, 

cooperatives, and quality inspection units. 

Integrating AI at this stage can 

significantly improve inspection accuracy 

and processing speed, replacing subjective 

manual evaluations with objective, 

scalable, and technology-enabled 

assessments (Mirembe et al., 2019). This 

aligns with broader efforts to digitize 

agricultural services and reduce 

postharvest losses through ICT 

innovations.  

 

Implementation Framework   Figure 1 

shows the overall workflow implemented in 

this study, starting with the acquisition of 

groundnut images and ending with 

evaluation of the Inception ResNet V2 

model. Each step of the process of image 

collection, pre-processing, augmentation, 

model training, and evaluation is explained 

in detail in the following subsections. This 

schematic highlights the methodological 

approach used to address the challenges of 

aflatoxin detection in groundnuts using the 

Inception ResNet V2 model to classify 

groundnut quality into four categories: 

healthy, moldy, pest-infested, and 

physiological disorders. The progression 

through these stages demonstrates the 

thoroughness of the methodology used, 

thereby ensuring that the developed model is 

accurate and reliable for practical use. 

 

Data Collection.  This study utilized a 

comprehensive data collection method to 

obtain high-resolution images of 

groundnuts, categorizing them into four 

primary categories: healthy, moldy, test-

infested, and physiological disorders. 

These categories represent critical factors 

associated with aflatoxin contamination 

and other indicators of groundwater quality 

(Figure 2). A digital camera with a fixed 

configuration, incorporating standardized 

lighting and regulated environmental 

conditions, was employed to guarantee 

uniformity in all image capture. Each 

groundnut sample was isolated and 

photographed repeatedly to document all 

potential visual attributes, thereby 

reducing the interference from external 

factors. The dataset was partitioned using a 

stratified sampling approach to ensure a 

balanced representation of all four classes 

across training, validation, and test sets. 

This method was selected to minimize 

sampling bias and ensure the model 

performance could be reliably assessed 

across all categories. The final distribution 

in the different sets was: Training Set: 

Healthy (226 samples), moldy (236 

samples), Pest-infested (191 samples), 

Physiological Disorders (160 samples). 
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Figure 1. Schematic implementation flowchart 

 

Validation Set: Healthy (50 samples), Moldy 

(62 samples), Pest-Infested (46 samples), 

Physiological Disorders (46 samples); Testing 

Set: Healthy (88 samples), Moldy (65 

samples), Pest-Infested (54 samples), 

Physiological Disorders (48 samples). The 

class balance was preserved to guarantee 

equitable representation among categories by 

employing data augmentation techniques to 

enhance the dataset diversity, especially for 

minority categories. 

 

Data Preprocessing.  Data preprocessing is a 

critical step in ensuring consistency and 

enhancing the model’s ability to generalize 

under diverse conditions. Each groundnut 

image was resized to a standardized dimension 

of 256 × 256 pixels to align it with the 

requirements of the Inception-ResNet-V2 

architecture. To further improve the robustness 

of the model and expand the dataset, a series of 

data augmentation techniques were applied. 

These included random rotations within a range 

of 0 °to 60 °, width and height shifts of up to  

20%, zooming of up to 20%, and horizontal and 

vertical flipping, with each image having a 50% 

probability of being flipped in either direction 

or remaining unchanged. These transformations 

introduced controlled variability and diversity 

into the dataset. They were designed to reflect 

conditions commonly seen during ground 

inspection, such as changes in orientation, 

scale, and minor occlusions. This helped the 

model focus on consistent visual features that 

do not depend on exact positioning or lighting.  

Simulating real-world conditions and 

improving the model’s ability to perform 

effectively in practical scenarios. These 

transformations simulate real-world variability 

in groundnut images, enabling the model to 

learn invariant features and improve its 

performance on unseen data. Mathematically, 

the image transformations can be expressed as 

 
 (𝑰 ′(𝒙 ′, 𝒚′ = 𝑰(𝒙 · 𝒄𝒐𝒔 𝜽 − 𝒚 · 𝒔𝒊𝒏 𝜽, 𝒙 ·  𝒔𝒊𝒏 𝜽 + 𝒚 ·
𝒄𝒐𝒔 𝜽)      (1) 

Where I (x’, y) represents the original image, I ′ 

(x,’ y) represents the augmented image, and 0 is 

the rotation angle. 
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Figure 2. Sample classified images 

 

 This transformation ensures that the model is 

exposed to images that vary in orientation, 

scale, and position, thereby minimizing the risk 

of overfitting and enhancing its generalization 

capability. Different augmentation percentages 

were applied to each category to address the 

class imbalances in the dataset. Healthy 

groundnut images were augmented by 5%, 

whereas moldy and physiological disorder 

images were augmented by 30% each. Pest-

infested images were augmented by 20%. 

These percentages were carefully selected to 

increase the representation of the 

underrepresented categories and ensure 

sufficient variability in more complex 

categories, such as moldy and pest-infested 

groundnuts. The higher augmentation rates for 

moldy and physiological disorder images 

reflect the need for increased representation of 

these categories in the dataset owing to their 

visual complexity and lower sample counts. 

This augmentation strategy exposed the model 

to a wide range of transformations, thereby 

improving its ability to classify groundnut 

images into four categories: healthy, moldy, 

test-infested, and physiological disorders. By 

incorporating these augmented images into the 

training set, the model learned to generalize 

more effectively, leading to an improved 

classification performance across all 

categories.  

 

Model Architecture.  The Inception-ResNet-

V2 architecture was chosen for this study 

because of its superior performance in 

outperforming other state-of-the-art 

architectures for complex image classification 

tasks, particularly in agricultural applications. 

This hybrid design merges the feature 

extraction power of inception networks with 

the stability and efficient gradient propagation 

of residual connections, thereby offering a 

unique advantage for handling large, complex 

datasets. These capabilities are especially 

beneficial for tasks in which multiscale feature 

extraction and maintenance of gradient flow 

are critical to model performance (Szegedy et 

al., 2017). In agricultural contexts, where 

datasets often include diverse images of plant 

species, disease symptoms, or crop conditions, 

Inception-ResNet-V2 has been proven to be 

highly effective. For example, in a study 

focused on plant disease detection from leaf 

images, Inception-ResNet-V2 outperformed 

architectures, such as ResNet-50 and VGG-16, 

in terms of classification accuracy and 

computational efficiency (Kumar et al., 2021). 

This makes it an ideal architecture for tasks that 

involve handling a wide variety of conditions, 

such as the classification of groundnut images 

into categories of healthy, moldy, test-infested, 

and physiological disorders.  

 

Additional studies in the agricultural domain 

reinforce the capabilities of the model (Yang et 

al., 2019; Pai et al., 2024) For instance, 

Inception-ResNet-V2 achieved a higher 

accuracy than Inception-V3 and DenseNet in a 

weed identification task, where the ability to 

differentiate subtle morphological differences 

in plants is crucial (Pai et al., 2024). Similarly, 

research on rice crop classification using UAV 
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imagery has highlighted the superior 

performance of Inception-ResNet-V2 over 

MobileNet and EfficientNet, showing its 

higher accuracy and resilience to 

environmental variability (Yang et al., 2019). 

This emphasizes the potential of the 

architecture for applications requiring robust 

image analysis in dynamic agricultural settings. 

 

Transfer Learning.   The transfer learning 

capabilities of Inception-ResNet-V2 were 

another critical reason for its selection in this 

study. Agricultural datasets, particularly those 

with annotated labels, are often limited in size. 

By leveraging pre-trained weights from large-

scale datasets, such as ImageNet, the model can 

utilize general features learned from millions of 

images and adapt them to specific tasks, such 

as groundnut classification. This transfer-

learning approach has been shown to improve 

the classification performance while 

significantly reducing the time required for 

training (Kumar et al., 2021; Okaron et al., 

2024). In this study, we fine-tuned the 

Inception-ResNet-V2 model by freezing the 

initial layers and unfreezing the last ten layers, 

allowing the model to retain general features 

while learning domain-specific characteristics 

relevant to groundnut classification. This 

method enables the model to focus on fine-

grained details, such as mold patches or pest 

damage, without losing the ability to generalize 

across different groundnut categories.   

 

Model Design and Training.  The Inception-

ResNet-V2 architecture begins with a stem 

block that performs initial convolutional and 

pooling operations to reduce the input image 

dimensions. Following this, Inception-ResNet 

blocks are used, where parallel convolutional 

filters of varying sizes (1 × 1, 3 × 3, 5 × 5) 

extract multi-scale features, and residual 

connections improve gradient flow and 

stabilize training. The residual connections are 

mathematically represented as: 

 𝒚 = 𝑭(𝒙, {𝑾𝒊}) + 𝒙                                   (2)   

allows the model to train efficiently, even with 

very deep networks, by preventing the 

vanishing gradient problem. Reduction blocks 

are placed at strategic points to decrease the 

spatial resolution and increase the feature 

depth, thereby enabling the network to handle 

complex patterns more efficiently. The model 

includes a fully connected layer and a softmax 

activation function that generates the final 

classification probabilities (Szegedy et al., 

2017). We extend the model by adding custom 

dense layers to enhance the learning capacity of 

the network. The first dense layer consisted of 

256 neurons with ReLU activation, followed 

by batch normalization and a dropout rate of 

0.4 for regularization. s dense layer with 256 

neurons and a dropout rate of 0.35 was added, 

followed by a final dense layer with 512 

neurons and a dropout rate of 0.3. The model’s 

output layer, a softmax function, comprises 

four neurons to output the class probabilities 

for four distinct categories: healthy, moldy, 

test-infested, and physiological disorders.  

 

Hyperparameter Optimization.   The training 

of the Inception-ResNet-V2 model was 

optimized using the Adam optimizer with an 

initial learning rate of 0.0001, chosen for its 

adaptive properties and ability to handle sparse 

gradients in high-dimensional datasets 

effectively (Szegedy et al., 2017). The 

categorical cross-entropy loss function was 

used to minimize the difference between the 

predicted probabilities ˆy and true labels y, as 

defined by 

 

 𝑳(𝒚, 𝒚ˆ) = − ∑ 𝒚𝒊 𝒍𝒐𝒈 (𝒚ˆ)
𝑵

𝒊=𝟏
                         (3) 

 

This loss function is well suited for the 

multiclass classification task addressed in this 

study, as it handles multiple output classes and 

ensures a smooth optimization process. 

Hyperparameter optimization was performed 

using a grid search across multiple parameter 

values to fine-tune the model. Specifically, we 

searched for learning rates α in the range of      

 
𝜶 ∈  𝟏𝟎 − 𝟒 , 𝟏𝟎 − 𝟓 , 𝟏𝟎 − 𝟔                (4)  
 

Batch sizes of 8, 16, and 32, as well as dropout 

rates ranging from 0.2 to 0.5, were tested. This 

systematic search allowed us to identify the 

optimal combination of hyperparameters, with 
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the best results obtained using a learning rate of 

α = 0.0001, batch size of 16, and dropout rate 

of 0.3. These values were selected based on the 

performance of the validation set, ensuring an 

effective balance between convergence speed 

and generalization. To address the class 

imbalance inherent in the dataset, class weights 

were computed and applied during training. 

This approach helped prevent the model from 

becoming biased towards the more frequent 

classes, such as Healthy, while maintaining 

accurate classification for minority classes, 

such as Pest-Infested and Physiological 

Disorders.  

 

Additionally, a learning rate scheduler, 

specifically the ReduceLROnPlateau callback, 

was employed to dynamically adjust the 

learning rate when the validation loss 

plateaued, thereby improving model 

generalization and preventing overfitting. The 

model was trained over 50 epochs with 

continuous monitoring of performance on a 

separate validation set to ensure stability and 

prevent overfitting. This hyperparameter-

tuning process allowed the model to achieve 

optimal performance in groundnut 

classification.   

 

RESULTS 

Evaluation Metrics.  To evaluate the 

performance of the model, we used accuracy, 

precision, recall, F1-score, and area under the 

curve (AUC) metrics (Yacouby and Axman, 

2020). These metrics provide a comprehensive 

assessment of the model’s ability to classify 

groundnut images across four categories. 

Precision measures the proportion of true 

positive predictions relative to the total 

predicted positives and is defined as  
 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
…     … … (𝟓)       

 

where TP, TN, FN, and FP refer to true 

positives, true negatives, false negatives, and 

false positives, respectively. Accuracy is the 

most commonly used metric to evaluate the 

performance of binary classifiers. This is 

defined as the ratio of correct predictions to 

the total number of predictions made by the 

model.   

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
… … … … … … … . . … … … (𝟔)       

 

where T P refers to true positives and F P 

refers to false positives. Recall is defined as 

the proportion of true positive predictions out 

of the actual positives.   

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
… … … … … … . . … … (𝟕) 

where N refers to the false negatives. The F1-

score, the harmonic mean of precision and 

recall, is calculated as follows: 

 𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 =  
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝒙 𝑹𝒆𝒄𝒂𝒍𝒍 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
… … . … (𝟖)     

In addition, the Area under the Curve (AUC) 

was computed based on the Receiver Operating 

Characteristic (ROC) curve, which provided 

insight into the model’s discriminative ability 

across various thresholds. A confusion matrix 

was also generated to visualize the model’s 

performance across the four categories, 

highlighting the correctly and incorrectly 

classified instances.  

 

Computational Setup and Resources.  The 

computational setup for this study involved the 

use of Keras 3.3.3 and TensorFlow 2.16.1 

frameworks, implemented on an MSI GL75 

Leopard 10SFR laptop equipped with 32 GB of 

RAM and an 8 GB NVIDIA GeForce RTX 

2070 GDDR6 GPU. To enhance deep learning 

model training efficiency, the system utilized 

NVIDIA CUDA Toolkit 12.1 and cuDNN 

SDK 8.7.0 for GPU acceleration. Python 

3.10.12 served as the programming 

environment, supplemented by libraries such as 

NumPy, Pandas, and Matplotlib for data 

preprocessing and visualization. A Canon EOS 

90D DSLR camera was used for image 

acquisition due to its high resolution (32.5 

MP), APS-C sensor, and adjustable EF-S lens, 

which provided superior image quality 

compared to equipment used in similar 

agricultural studies (Bernacki and Scherer, 

2023). This combination of computational and 

imaging resources enabled effective processing 

and training of the Inception-ResNet-V2 

model, particularly when applying data 



                                                                                                         TAMALE ET AL., 2025 

149 

 

augmentation techniques for improved 

aflatoxin detection in groundnuts.  

 

The performance of the Inception-ResNet-V2 

model was evaluated using several key metrics, 

demonstrating its effectiveness in classifying 

groundnut images into four categories: healthy, 

moldy, test-infested, and physiologically 

disordered.   

 

The confusion matrix shown in Figure 3 

provides a comprehensive view of the 

classification ability of the model.  

 

 
Figure 3. Confusion matrix showing model classification results for the four groundnut 

categories. 

For the Healthy category, the model correctly 

classified 76 out of 88 samples, with minor 

misclassifications: eight samples were 

mistakenly labelled as Pest-Infested, and four 

as Physiological Disorder. The highest 

performance was observed in the Moldy 

category, where the model correctly identified 

63 out of 65 samples with only two 

misclassifications. Similarly, the Pest-

Infested category showed strong 

performance, with 49 out of 54 samples 

correctly classified, although two samples 

were misclassified as healthy and two as 

physiological disorders. In the Physiological 

Disorder category, the model demonstrated 

accuracy, misclassifying only one sample as 

Pest-Infested while correctly identifying 47 

samples. These results indicate that despite 

some minor classification errors, the model is 

highly effective across all categories. 

 

The model achieved high performance across 

all metrics, as shown in Figure 4, with an 

accuracy of 99.29%, precision of 100%, recall 

of 98.44%, and F1-score of 99.21% on the test 

dataset. These results highlight the ability of 

the model to generalize well to unseen data, 

confirming that it does not overfit the training 

data. To further assess this, we calculated the 

bias as the difference between the mean 

validation accuracy and test accuracy, which 

was 0.84%. The performance deviation, 

measured as the standard deviation of the test 

accuracy across five stratified folds, was 

0.71%, indicating stable performance across 

the different data splits.  

 

The precision, recall, and learning rate curves 

shown in Figure 5 illustrate the model training 

process over 50 epochs. Precision improved 

rapidly in the early epochs, reaching nearly 

100% on the training set and stabilizing at 

around 90% on the validation set. To further 
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test the model’s validity, we performed a 

permutation test using 1000 label shuffles. 

The resulting p-value was less than 0.01, 

confirming that the model’s performance is 

statistically significant and unlikely to have 

occurred by chance. These findings, together 

with the alignment of training and validation 

curves, provide strong evidence that the 

model generalizes effectively and is not 

overfitted.  

 
Figure 4. Overall model performance metrics showing accuracy, precision, recall, and F1-score 

This indicates that the model was highly 

accurate in correctly identifying true-

positive instances while minimizing false-

positives. Similarly, recall followed a steep 

upward trajectory in the initial epochs, with 

both training and validation recall 

exceeding 98% by epoch 30, demonstrating 

that the model successfully identified most 

of the relevant instances (true positives). 

 

 
Figure 5. Precision, recall, and learning rate trends across 50 training epochs for both training 

and validation sets 

 

The learning rate curve reflects the fine-

tuning of the model during training, with 

significant reductions in the learning rate 

occurring around epoch 20, and again 

around epoch 30. These reductions helped 

the model stabilize its performance and 

prevent overfitting, as evidenced by the 

steady precision and recall values in later 

epochs. The final learning rate drop 

coincided with the plateau in both precision 

and recall, indicating that the model had 

reached optimal convergence at this point. 

The model loss and accuracy curves shown 

in Figure 6 provide a detailed view of the 
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training and validation performance over 50 

epochs. The training loss decreased 

consistently, showing a smooth downward 

trend, indicating that the model effectively 

learned and minimized errors during 

training. The validation loss followed a 

similar trend, although it began to stabilize 

around epoch 20, with minimal fluctuations 

thereafter. This suggests that the model’s 

performance on the validation set is stable, 

and no signs of overfitting are evident, as the 

validation loss remains relatively low and 

consistent. The accuracy curves further 

supported these findings. The training 

accuracy improved rapidly during the first 

20 epochs, reached over 90%, and continued 

to climb, leveling off at approximately 98% 

by the end of the training process. The 

validation accuracy closely followed the 

training accuracy during the early epochs, 

reaching 90% by epoch 10 and stabilizing 

between 90% and 93% for the remainder of 

the training process. This alignment 

between the training and validation 

accuracies indicates that the model 

generalizes well and is capable of 

maintaining high performance on unseen 

data. 

 

 
Figure 6. Training and validation loss and accuracy over 50 epochs 

 

The ROC curves shown in Figure 7 provide 

additional confirmation of the model’s 

strong discriminative power. The AUC 

values for each class were high, and 0.98) 

for Healthy, 1.00 for Moldy, 0.97 for Pest-

Infested, and 0.99 for Physiological  

 

Disorders, respectively. These high AUC 

values demonstrate the ability of the model 

to distinguish between different classes, 

even at varying decision thresholds. The 

AUC of 1.00 for the Moldy category 

indicates perfect classification performance 

for this class, while the slightly lower AUC 

for PestInfested suggests that the model 

faced more challenges distinguishing 

between pest damage and other conditions, 

a pattern consistent with the confusion 

matrix findings.  

 

The qualitative results, shown in Figure 8, 

offer insight into the model’s decision-

making by showing incorrectly classified 

samples. Misclassifications occurred mainly 

between PestInfested and Physiological 

Disorder samples, with several Pest-Infested 

samples being labelled as healthy or 

physiological disorders. This suggests that 

the model struggles to distinguish subtle 

visual differences between these categories, 

which is likely due to overlapping features. 
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Figure 7. ROC curves with AUC values for the classification of Healthy, Moldy, Pest-Infested, 

and Physiological Disorder groundnut categories 

 

DISCUSSION 

The results of this study demonstrated the 

efficacy of using the Inception-ResNet-V2 

deep learning model for the classification 

of groundnuts into four categories: healthy, 

moldy, test-infested, and physiological 

disorders. The model achieved excellent 

performance across multiple metrics, 

including accuracy, precision, recall, and 

F1-score, with an overall accuracy of 

99.29%. These findings highlight the 

potential of advanced deep learning 

architectures to automate quality 

assessment in agricultural products such as 

groundnuts, which are traditionally labor-

intensive processes.   

One of the most notable outcomes was the 

high performance achieved in the Moldy 

category, where the model reached an AUC 

of 1.00. This likely reflects the distinct 

visual patterns associated with mold 

contamination, such as discoloration and 

fungal textures, which may have made the 

class easier to separate during training and 

testing. This result is consistent with 

previous studies that showed high accuracy 

in detecting mold and other diseases using 

deep learning techniques (Kumar et al.,  

2021; Pai et al., 2024). The distinct visual 

features of the mold likely make it easier 

for the model to generalize, especially 

when trained on sufficient samples. 

However, we acknowledge that such a 

perfect score may not generalize to all real-

world settings and should be interpreted 

with caution. Further testing on more 

diverse and independent datasets would 

help validate the model’s reliability for this 

class. However, some misclassifications 

were observed between the Healthy and 

Physiological Disorder categories as well 

as between the Pest-Infested and Healthy 

samples. The confusion matrix revealed 

that some healthy samples were classified 

as either Pest-Infested or Physiological 

Disorders. This misclassification can be 

attributed to subtle visual differences 

between these categories, where Healthy 

may appear as pest damage or 

physiological abnormalities. Other studies 

on agricultural image classification have 

also noted that visually similar conditions 

can lead to confusion in model predictions, 

particularly in the presence of overlapping 
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features (Kamilaris and Prenafeta-Boldú, 

2018).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is important to note that these 

misclassifications were relatively few and 

occurred primarily in borderline cases. The 

model maintained high performance across 

all metrics, suggesting that its predictions 

are reliable even in the presence of visual 

ambiguity. This indicates the current 

version is already sufficiently accurate for 

practical deployment in post-harvest 

inspection workflows. Future work could 

address this limitation by incorporating 

more advanced feature extraction methods 

or by applying attention mechanisms that 

allow the model to focus on key regions of 

the image where pest damage is more likely 

to appear. 

 
Figure 8. Examples of misclassified groundnut images with true and predicted labels 

 

The overall high precision (100%) indicates 

that the model has effectively minimized 

false positives, meaning that when it predicts 

a sample as moldy or test-infested, it is highly 

likely to be correct. This is an important 

factor in agricultural quality control, where 

incorrectly identifying a healthy product as 

contaminated can lead to unnecessary food 

waste and economic losses. Similarly, the 

high recall (98.44%) demonstrates that the 

model successfully identified most of the 

contaminated samples, which is a critical 

 requirement for food safety applications 

where missed detections could result in 

significant health risks. The ROC curves and 

high AUC values further validated the 

model’s ability to discriminate between 

different groundnut categories. An AUC 

value approaching 1.00 for most categories 

indicates that the model is highly effective 

across a range of decision thresholds, with 

particularly strong performance in 

distinguishing Moldy groundnuts from other 

categories.  
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CONCLUSION 

This study is the first to classify groundnuts 

into four distinct categories: using deep 

learning techniques healthy, moldy, test-

infested, and physiological disorders. By 

applying the Inception-ResNet-V2 model, 

we address the critical challenge of 

automating groundnut quality assessment, a 

task traditionally performed manually, which 

is both labor-intensive and prone to errors. 

The model demonstrates the potential of AI 

to transform agricultural quality control, 

offering an objective, scalable, and efficient 

alternative to manual inspection.  

 

A key achievement of this study is the 

model’s exceptional performance, achieving 

AUC scores of 0.99 for Healthy, 1.00 for 

Moldy, 0.96 for Pest-Infested, and 0.99 for 

Physiological Disorder. Despite this overall 

success, the model struggled to distinguish 

healthy groundnuts from pests and 

physiological disorders, with some 

misclassifications. This indicates that 

although the model can accurately classify 

the majority of samples, subtle visual 

similarities between these categories can still 

pose challenges, as is often the case in 

manual inspections.  

Overall, this study paves the way for more 

advanced AI-driven systems in agriculture, 

in which precision and consistency are 

critical for ensuring food safety and quality. 

Future work should focus on refining the 

ability of the model to handle complex 

differences between visually similar 

categories, further enhancing its robustness 

and reliability. Nonetheless, these promising 

results highlight the potential of integrating 

AI technologies into agricultural systems, 

significantly improving food safety, reducing 

manual labor, and ensuring more reliable 

quality control across the supply chain.  
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