

One Health Review of Carbapenem-Resistant Enterobacterales in the Tropical East Africa to West Asia Belt

FERDOUS, K.¹, KHAITSA, M.L.², PARK, J.Y.³, SEO, K.S.³ and BROOKSHIRE, C.^{1*}

ABSTRACT

Carbapenem-resistant Enterobacterales (CRE) have emerged and spread globally throughout human, animal, and environmental contexts. They are of urgent concern in healthcare settings and are associated with significant morbidity and mortality. Ecological dissemination of CRE occurs globally, and one contributing factor is environmental contamination with residues from human, veterinary, and agricultural use of antimicrobials. High rates of antimicrobial resistance have been documented in the tropical belt of East Africa and West Asia, yet this region remains understudied in terms of coordinated One Health surveillance and response to CRE. This review synthesized data from peer-reviewed articles published between 2013 and 2025 to assess the occurrence, transmission, and control of CRE across the tropical belt from East Africa to West Asia. The most prevalent CRE species were Klebsiella pneumoniae and Escherichia coli among drug-resistant bacteria sourced from humans, animals, and the environment. The reported prevalence of CRE varied greatly but in some contexts was nearly 70%, with many isolates carrying carbapenemase genes such as blaIMP and blaVIM in this tropical belt. Rising ESBL and carbapenem-resistant bacteria in East Africa and West Asia underscore the urgency for international collaboration, regulation, and data sharing to inform effective strategies and interventions against antimicrobial resistance.

Keywords: Carbapenem-Resistant Enterobacterales, East Africa, One Health, West Asia

RÉSUMÉ

Les Entérobactéries résistantes aux carbapénèmes (ERC) ont émergé et se sont propagées mondialement dans les contextes humains, animaux et environnementaux. Elles suscitent une inquiétude urgente dans les établissements de santé et sont associées à une morbidité et une mortalité importantes. La dissémination écologique des ERC se produit à l'échelle mondiale, l'un des facteurs contributifs étant la contamination environnementale par les résidus issus de l'usage des antimicrobiens en médecine humaine, vétérinaire et en agriculture. Des taux élevés de résistance aux antimicrobiens ont été documentés dans la ceinture tropicale de l'Afrique de l'Est

Cite as: Ferdous, K., Khaitsa, M.L., Park, J.Y., Seo, K.S. and Brookshire, C. 2025. One Health Review of Carbapenem-Resistant Enterobacterales in the Tropical East Africa to West Asia Belt. *African Journal of Rural Development* 10 (3):340-359.

¹Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University. 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762.

²Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University. 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762.

³Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University. 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762.

^{*}Corresponding author email: c.brookshire@msstate.edu

et de l'Asie de l'Ouest, bien que cette région reste peu étudiée en matière de surveillance coordonnée « Une Seule Santé » et de réponse face aux ERC. Cette revue a synthétisé les données issues d'articles évalués par des pairs publiés entre 2013 et 2025 afin d'évaluer l'occurrence, la transmission et le contrôle des ERC dans la ceinture tropicale allant de l'Afrique de l'Est à l'Asie de l'Ouest. Les espèces ERC les plus courantes étaient Klebsiella pneumoniae et Escherichia coli, issues de bactéries résistantes isolées chez les humains, les animaux et dans l'environnement. La prévalence rapportée des ERC variait fortement, atteignant dans certains contextes près de 70 %, de nombreux isolats portant les gènes carbapénémases tels que blaIMP et blaVIM. L'augmentation des bactéries résistantes aux BLSE et aux carbapénèmes en Afrique de l'Est et en Asie de l'Ouest souligne l'urgence d'une collaboration internationale, d'une réglementation adéquate et d'un partage des données pour concevoir des stratégies et interventions efficaces contre la résistance aux antimicrobiens.

Mots clés: Entérobactéries résistantes aux carbapénèmes, Afrique de l'Est, Une Seule Santé, Asie de l'Ouest

INTRODUCTION

In recent years, the rapid emergence and spread of Carbapenem-Resistant Enterobacterales (CRE) has occurred alongside carbapenem antibiotic use, and potentially misuse. Genetic determinants of resistance occur on both chromosomes and transmissible mobile elements, such as plasmids (Partridge et al., These plasmids can easily spread 2018). different including between bacteria, interspecies transmission, while pathogenic CRE bacterial strains can also spread between patients (El-Defrawy et al., 2022). CREs are capable of spreading rapidly through healthcare systems (Giannella et al., 2014), communities, animals, and the environment (Sivalingam et al., 2019), and infections due to these organisms are associated with significant morbidity and mortality (Logan et al., 2017). The recent discovery of plasmid-borne colistin resistance in humans has raised concerns that these additional sources of CRE could fuel the spread of resistance in communities, as these organisms are no longer limited to healthcare settings (McGann et al., 2016). Improper use of antimicrobials can occur in human healthcare, veterinary healthcare (both companion animal and food producing animals), as well as other forms of agriculture (e.g., citrus farming). There are limited classes of antimicrobials, and

some classes are used very broadly across many applications (e.g., tetracycline antibiotics). In several countries, agricultural veterinary use accounts for a large percentage of total antibiotic consumption on a kilogram basis, sometimes up to 80% (Manyi-Loh et al., 2018; Todman et al, 2023). It is estimated that between 100,000 and 200,000 tonnes of antibiotics from both medical and veterinary use are released into the global environment each year (Danner et al., 2019). Antibiotics are also widely used in aquaculture for disease prevention and to promote growth, which contributes to environmental contamination and can affect the fish and shellfish that people eat (Shen et al., 2020). Many countries in Europe and North America have moved to systems of animal care that no longer use antibiotics for growth promotion (WHO, 2017), but global standards do not exist for protecting the use of antimicrobials for medically necessary contexts only. There is an urgent need for coordinated monitoring and control efforts through a One Health approach, particularly in regions with high rates of antimicrobial resistance combined with high rates of potentially unnecessary use of antimicrobials across all sectors utilizing these compounds.

In East Africa, antibiotic resistance has been documented in humans (Moses et al., 2014; Mushi et al., 2014), livestock (Madoshi et al., 2016; Seni et al., 2016), wildlife (Katakweba et al., 2015), and the environment (Erb et al., 2018; Kateete et al., 2019). Carbapenem been identified resistance has Enterobacterales and other gram-negative bacteria (Mushi et al., 2014; Ampaire et al, 2015; Okoche et al., 2015; Kateete et al., 2016; Henson et al., 2017). The high rates of carbapenem-resistant Klebsiella pneumoniae and Escherichia coli pose a serious challenge to the effective treatment of infections caused carbapenemase-producing Enterobacteriaceae (Ssekatawa et al., 2018).

Similarly, West Asia, in highly resistant Klebsiella pneumoniae clones started dominating the United Arab Emirates (UAE) since 2009, where their dissemination is facilitated by international travel, trade, and tourism, severely impacting the overall antibiotic resistance patterns, including those of colistin and tigecycline (Thomsen et al., 2023). The appearance of Enterobacterales with both AmpC/ESBL enzymes and reduced susceptibility to carbapenems, along with Klebsiella pneumoniae strains showing resistance to both colistin and carbapenemases, underscores significant treatment challenges in the Asia-Pacific region (Chen et a.l, 2022).

The tropical belt stretching from East Africa to West Asia is characterized by high population diverse ecosystems. intensive mobility. agriculture, and variable healthcare infrastructure, all of which contribute to the emergence and spread of antimicrobial resistance (AMR). Yet, this region remains understudied in terms of coordinated One Health surveillance and response to CRE. Due to the interconnected nature of humans, animals, and the environment, antibiotic use, the presence of antibiotic residues, and the spread of antibiotic-resistant bacteria are all

closely tied to the One Health framework (Ahmad et al., 2023). To effectively combat and control antibiotic resistance (ABR), strong surveillance across all sectors, collectively, individually and must established at national and international levels. effort should include addressing laboratory capacity challenges and ensuring the implementation of coordinated plans and actions under the One Health approach.

In this review, we synthesize current knowledge on the occurrence, transmission, and control of CRE across human, animal, and environmental domains from published articles in the tropical East Africa to the West Asia corridor. We aim to identify gaps, highlight emerging patterns, and propose integrated strategies for surveillance and mitigation grounded in the One Health framework. By focusing on this geostrategic and ecologically dynamic region, this review contributes to a more nuanced understanding of CRE's transboundary risks and the need for coordinated regional and global responses.

MATERIALS and METHODS

Study Area. The tropical belt stretching from East Africa to West Asia including countries such as Kenya, Uganda, Tanzania, Rwanda, Ethiopia, the Democratic Republic of the Congo (DRC), Malawi, Egypt, and Sudan Kuwait, Iran, Iraq, United Arab Emirates (UAE) and Turkey.

Search Criteria. Searchengines such as PubM ed, Scopus, ScienceDirect, and Google Scholar were used to conduct the literature review. The websites and repositories of pertinent sector ministries were searched further, but no additional information was found there. The search keywords used were "carbapenem resistance in tropical East Africa", "antimicrobial resistance in human-animal-environment", "carbapenem resistance genes in East Africa", "risk factors for Carbapenem-

Resistant Enterobacterales (CRE) in East Africa and West Asia", "prevalence and genotypic characterization of antimicrobial resistance in Africa". The inclusion criteria included full-text research articles published between 2013 and 2025 that described the prevalence of carbapenemase-producing (CP) bacteria isolated from patients and environments. Non-English language articles from African countries were excluded.

Data Analysis. The data were extracted using a template set of characteristics, including study period, study location, publication year, country, source of sample, bacterial species isolates, number of CRE isolates, methods of carbapenemase genes detection, and prevalence of carbapenem-resistant isolates.

RESULTS and DISCUSSION

CRE in Humans. Carbapenem-resistant Enterobacterales present a major public health threat in the tropical East Africa to West Asia corridor, with rising prevalence documented across healthcare settings. In East Africa, studies from Uganda, Tanzania, and Kenya report frequent detection of carbapenemresistant Klebsiella pneumoniae Escherichia coli in clinical samples (Mushi et al., 2014; Okoche et al., 2015; Henson et al., 2017). At Mulago National Referral Hospital in Uganda, over 20% of Enterobacterales isolates exhibited carbapenem resistance, primarily associated with blay_{IM} genes (Okoche et al., 2015). In Tanzania, bla_{IMP} and bla_{VIM} genes were also prevalent among multidrug-resistant isolates (Mushi et al., 2014). In Egypt, high levels of CRE colonization and infection have been attributed to antibiotic overuse, with emerging the dominant bla_{OXA-48} carbapenemase gene (El-Defrawy et al., 2022). In West Asia, the United Arab Emirates (UAE) has experienced an increase in CRE prevalence, with a 12-year surveillance study reporting an overall rate of 3.8% and a concerning rise in ertapenem resistance

(Thomsen *et al.*, 2023). The authors attribute dissemination in part to international travel, trade, and tourism. Similarly, CRE strains coharboring bla_{NDM} and bla_{OXA-48} have been documented in Iran and Iraq, underscoring the transboundary nature of resistance (Solgi *et al.*, 2017; Hosseinzadeh *et al.*, 2018; Ali Albadery *et al.*, 2022). These findings reflect a growing public health burden and highlight the urgent need for strengthened antimicrobial stewardship and infection control infrastructure across the region.

CRE in Animals. Although carbapenem use is largely restricted in veterinary medicine, CRE and similar types of resistance have been reported in animals across East Africa and West Asia, raising concerns about environmental and food-chain transmission. In East Africa, studies in Tanzania have identified ESBL-producing Enterobacterales in a broad range of species, including livestock, companion animals, and wildlife such as buffalo, wildebeest, and zebra (Katakweba et al., 2015; Madoshi et al., 2016; Seni et al., 2016). While direct reports of CRE in animals remain limited, the detection of resistance in wildlife and domestic animals living in close proximity to human settlements bidirectional suggests potential for transmission. In Egypt, CRE genes such as bla_{OXA-48}, bla_{NDM}, and bla_{VIM} have been identified in E. coli isolated from farmed Nile tilapia (*Oreochromis niloticus*), with a positive correlation between resistance gene detection and elevated water temperature (Hamza et al., 2020). This indicates that resistance genes may have originated in healthcare settings and subsequently reached farms, potentially via infected human carriers or through contaminated sewage discharge (Hamza et al., 2016). Colistin-resistant strains have also been isolated from aquaculture systems in Egypt, indicating co-selection and environmental spread of resistance genes (Shen et al., 2020). In West Asia, Lebanon has reported CRE in poultry, pigs, and cattle, as part of broader

surveillance highlighting the role of foodproducing animals in AMR epidemiology (Osman *et al.*, 2019). These findings support growing evidence that antimicrobial resistance including to last-resort antibiotics is not confined to clinical settings but extends to the animal sector through complex ecological and anthropogenic pathways.

Environmental CRE. The environment serves as a critical reservoir and conduit for the dissemination of CRE, particularly in settings where antibiotic use and waste disposal are poorly regulated. In East Africa, high rates of ESBL-producing E. coli have been detected in shared and private latrines in informal urban settlements in Tanzania, suggesting significant contamination and fecal environmental exposure to resistant organisms (Erb et al., 2018). Environmental isolates have also been shown to contribute to the local spread of pathogenic E. coli strains in Egypt, reinforcing the role of environmental reservoirs in AMR dissemination (El-Sher et al., 2021).

Antibiotics and resistance genes frequently enter the environment through human and animal waste. agricultural runoff. aquaculture effluent. An estimated 100,000 -200,000 tonnes of antibiotics are released into the global environment each year from both human and veterinary use (Danner et al., 2019). aquaculture systems, the use of antimicrobials likely contributes the development of resistance in aquatic organisms and environmental compartments. Notably, colistin resistance genes have been detected in aquaculture samples from Egypt, indicating environmental transmission pathways relevant to CRE (Shen et al., 2020).

Environmental **c**onditions in tropical regions, including high temperatures and humidity, may further accelerate resistance gene transfer and persistence. A recent study from Egypt linked elevated water temperatures to increased detection of carbapenemase genes in

aquaculture-derived *E. coli* (El Badawy *et al.*, 2025). Furthermore, environmental stressors and suboptimal antimicrobial storage under such conditions can lead to degradation and exposure to sub-lethal concentrations of antibiotics, promoting selective pressure for resistance (Beceiro *et al.*, 2013; Fagunwa *et al.*, 2024). Collectively, these findings emphasize the importance of environmental surveillance as a core pillar of One Health efforts to monitor and control the spread of CRE in the tropical East Africa to West Asia region.

The risk factors for emergence transmission dynamics. The factors that contribute to the development and spread of carbapenem resistance among animals, humans, and in the environment vary within and between the countries (Table 1). spread of antimicrobial resistance (AMR) has been linked to various food production and livestock management practices (Allcock et al. 2017). Pigs and chickens represent the most investigated species, in which carbapenem resistance in Enterobacteralese has been most frequently observed (Bonardi et a., 2019). Food-producing animals and food products are recognized sources of ESBL-producing E. coli in Lebanon (Osman et al., 2019). Over the past decade, there has been widespread reporting of resistance to third-generation cephalosporins, accompanied resistance often by carbapenems, colistin, and various other antimicrobial agents among animal populations (Al-Mir et al, 2021). The first study from Egypt in 2013 reported high rates of ESBLs and carbapenemases (65.09% and 11.32%, respectively) in Enterobacteriaceae isolated from retail chicken meat (Abdallah et al, 2015). The overall frequency of carbapenem-resistant Enterobacterales in the region ranges from 0%-68% (Table 2). Unregulated and illegal use of extended-spectrum cephalosporins (ESC) in the poultry sector has long been identified as a major cause of massive spread of ESCresistant Escherichia coli (Al-Mir et al., 2021).

To overcome the resistance against extended-spectrum cephalosporins (ESC) and cephamycins in *Enterobacteriaceae*, carbapenems have been introduced in human medicines (Taggar *et al.*, 2020). The burden of bacterial AMR would be correspondingly higher with higher antibiotic consumption in high-resource settings, and the study found that the highest rates of death were in sub-Saharan Africa and South Asia (Murray *et al.*, 2022).

Older age was identified as a factor associated with a higher likelihood of carrying ESBLproducing Enterobacteriaceae (ESBL-PE) in community settings in Mwanza City, Tanzania (Mshana et al., 2016). Higher carriage rates of these bacteria have also been observed in individuals over 65 years old, likely due to repeated hospitalizations (Sonda et al., 2018). In several studies the history of antibiotic use is reported as the main driver in the Colonization of intestinal microbiota with carbapenemaseproducing Enterobacteriaceae in pediatric patients (Eshetie et al., 2015; Knöppel et al., 2017; Nour et a.l, 2017; Ghaith et al., 2019). Nour et al., 2017 also found that the duration of the central venous device is a significant risk factor for transmission and emergence of carbapenem resistance in Egypt. In Tanzania, neonatal colonization with ESBL-producing Enterobacteriaceae (ESBL-PE) in a tertiary hospital was linked to maternal colonization and prior antibiotic use (Marando et al, 2018). Another study on the genetics carbapenemase-producing Escherichia responsible for sepsis in Egyptian children found that colonization with ESBL-producing E. coli constitutes a significant risk factor (Zaki et al., 2019). In addition to microbial colonization, underlying patient-related factors such as a history of disease and chronic health conditions like chronic obstructive pulmonary disease (COPD) have also been identified as important contributors to susceptibility (Al Fadhli et al., 2020; Dong et al., 2025). Several studies on Carbapenem-Resistant Isolates from the Tertiary Care Hospitals stated that mechanical ventilation and urinary catheterization in Egypt (Al-Baz et al., 2022), the hospital environment, such as patients' beds in ICUs and the premature unit in Tanzania (Silago et al, 2022), previous antibiotic exposure in Ethiopia, Egypt (Eshetie et al., 2015; Nour et al., 2017; Ghaith et al., 2019) facilitated the coexistence of chromosomal and plasmid mediated carbapenem genes in children and adult humans and also their companion animals both in East Africa and West Asia. Risk factors associated with CRKP (carbapenem-resistant Klebsiella pneumoniae) immunosuppression, infection include admission to the ICU, prior exposure to antibiotics such as carbapenems, quinolones, β -lactam/ β -lactamase glycopeptides, and inhibitors. procedures, surgical use mechanical ventilation, central venous catheterization, indwelling urinary catheters, and nasogastric intubation (Li et al., 2020). The other most contributory factors include the political and socioeconomic issues, regional Environment/Climate conditions. In low- and middle-income countries, there is limited laboratory infrastructure, which often prevents access to microbiological testing needed to guide and optimize antibiotic use (WHO Sepsis Technical Expert meeting, 2018). The other most contributory factors include the political socioeconomic and issues. regional Environment/Climate conditions. In low- and middle-income countries, there is limited laboratory infrastructure, which often prevents access to microbiological testing needed to guide and optimize antibiotic use (WHO Sepsis Technical Expert meeting, 2018). The high burden of bacterial antimicrobial resistance (AMR) results from both the widespread presence of resistant strains and the high incidence of serious infections, such as lower respiratory tract infections, bloodstream infections, and intra-abdominal infections, which are more common in these regions (Vos et al., 2020).

Table 1. Risk factors for the emergence and transmission of CRE in East Africa and West Asia

Carbapenem Resistance Study	Risk Factors Investigated	Significant Risk Factor(s)	Hosts	Country	Reference
Colonization of intestinal microbiota with carbapenemase-producing <i>Enterobacteriaceae</i> in paediatric	Age, gender, ward class; specific co-morbid conditions (cardiovascular, renal, pulmonary, etc.); exposure (≥1 day(s)) to antimicrobials (imipenem, meropenem, ertapenem, doripenem, ciproflox acin, vancomycin, cephalosporins, piperacillin-tazobactam, metronidazole)	Antibiotic exposure	children	Egypt	Ghaith et al, 2019
Carbapenemase-producing Enterobacteriaceae among patients with urinary tract infection	History of hospitalization, ICU admission, prior antibiotic use, prior UTI, and chronic diseases, pregnancy status, presence of urinary catheter, and mechanical ventilation	Antibiotic exposure	Human	Ethiopia	Eshetie et al, 2015
Risk factors and clinical outcomes for carbapenem- resistant Gram-negative late- onset sepsis in a neonatal intensive care unit	Birth weight, gestational age, inborn or outborn, time to start enteral feeding, type of feeding, previous antibiotics therapy and their types, previous use of total parenteral nutrition (TPN), presence and duration of use of central line devices, previous corticosteroid therapy, previous surgery, mechanical ventilation and its duration, and underlying chronic conditions	Previous antibiotic use, Previous antibiotic duration, and Duration of central venous device	Children	Egypt	Nour <i>et al</i> , 2017
Genetic study of carbapenemase-producing Escherichia coli causing sepsis among Egyptian children	Age, primary bloodstream infection, duration of hospital stays, and the presence of devices such as mechanical ventilator, Central Venous Catheter (CVC) or urinary catheter, positive ESBL-producing <i>E. coli</i> colonization, and positive CPE colonization	Positive colonization with ESBL-producing <i>E. coli</i>	Infants and children	Egypt	Zaki <i>et al</i> , 2019
Prevalence and Antibiotic Resistance Profiles of Carbapenem-Resistant Klebsiella Pneumoniae Isolated from Tertiary Care Hospital	Hypertension, Diabetes mellitus, Renal insufficiency, Congenital anomaly, Mechanical ventilation, Urinary catheterization, Central venous catheterization, Period of ICU admission	Mechanical ventilation and urinary catheterization	Human	Egypt	Al-Baz et al, 2022
Prevalence of Carbapenemase- Encoding Genes and Antimicrobial Resistance Pattern of Enterobacteriaceae Isolated from Hospitalized Patients	Age group, gender, and teaching hospitals and hospital wards	CPE prevalence across the three Khartoum State Teaching Hospitals was significant	Human	Sudan	M. Hamid <i>et al</i> , 2021

Prevalence and Characterization of Carbapenem-Resistant Enterobacteriaceae Isolated from	Age, gender, and resistance to cephalosporins	-	Human	Uganda	Okoche et al, 2015
Referral Hospital Klebsiella pneumoniae carbapenamases in Escherichia coli isolated from humans and livestock		-	Humans and their correspo nding livestock	Uganda	Tuhamize et al, 2023
Co-existence of two <i>bla</i> _{NDM-5} and <i>bla</i> _{OXA-181} on distinct plasmids in a carbapenemresistant <i>Klebsiella pneumoniae</i> from a tertiary hospital	Age, antibiotic exposure	-	Paediatri c and adult human patients	Tanzania	Mapunda et al, 2025
First Identification and genomic characterization of multidrug-resistant carbapenemase-producing Enterobacteriaceae clinical isolates	Hospitals wards	Intra-hospital spread	Human	Malawi	Kumwenda <i>et al</i> , 2019
Predominance of Acinetobacter spp., Harboring the blaIMP Gene, Contaminating the Hospital Environment in a Tertiary Hospital	Hospital's ICUs surfaces, and highly dependent units (HDUs) surfaces, antibiotic exposure	Patients' beds in ICUs and the premature unit-	Infant, Human, and Hospital Environ ment	Tanzania	Silago et al, 2022
Molecular epidemiology of <i>Klebsiella</i> pneumoniae invasive infections over a decade		-	Children and adult humans	Kenya	Henson et al, 2017
Prevalence, aetiology and antibiotic sensitivity profile of asymptomatic bacteriuria isolates from pregnant women in selected antenatal clinics	Age, parity, education, and gestational age	-	Human	Kenya	Ayoyi et al, 2017
High Prevalence of Antimicrobial Resistance	Age, medical condition predisposing to infection- elderly, HIV, indwelling urinary catheter, diabetes mellitus,	-	Human	Rwanda	Ntirenganya <i>et al</i> , 2015

Among Common Bacterial Isolates in a Tertiary Healthcare Facility	severe malnutrition, malignancy, comorbidity- at least one comorbidity, two or more comorbidities				
Antimicrobial resistance in urinary isolates from inpatients and outpatients at a tertiary care hospital		-	Human	Democra tic Republic of Congo)	Irenge et al, 2014
High Prevalence of New Delhi Metallo-β-Lactamase-1 (NDM- 1) Producers among Carbapenem- Resistant <i>Enterobacteriaceae</i>	Age, gender, patients with UTI, BSI, wound or tissue infection, history of travelling	UTI	Human	Kuwait	Jamal et al,2015
Molecular characterization of intestinal carriage of carbapenem-resistant Enterobacteriaceae among inpatients at two Iranian university hospitals: first report of co-production of blaNDM-7 and blaOXA-48	Age, gender, unit of hospitalization, invasive medical device utilization, history of surgery, presence of wounds, transfer from another hospital, transfer between hospital units, and exposure to antibiotics	Exposure to the antibiotics, ICU, mechanical ventilation, urinary catheter, recent surgery, patients transferred from another hospital, transfer between hospital units, male patients	Human	Iran	Solgi <i>et al</i> , 2017
Emergence of blaNDM-1 and blaOXA-48-like harboring carbapenem-resistant <i>Klebsiella pneumoniae</i> isolates from hospitalized patients	Sex, hospital wards,	No statistically significant risk factor found	Human	Iran	Hosseinzadeh <i>et al</i> , 2018
Prevalence of carbapenem- resistant Enterobacteriaceae and emergence of high rectal colonization rates of blaOXA- 181-positive isolates in patients admitted to intensive care units	Age, gender, sample type, nationality, travel history, previous hospitalization within one year of current admission, diagnosis, co-morbidity, and prior antibiotic use	Chronic obstructive pulmonary disease (COPD) comorbidity, previous hospitalization, and nationality	Human	Kuwait	Al Fadhli et al, 2020

Phenotyping and Genotyping	Age, gender, UTI, antimicrobial exposures	Antimicrobial	Human	Iraq	Ali Albadery et al,
Evaluation of E. coli Produces		exposures			2022
Carbapenemase Isolated from					
Cancer Patients					

Table 2. Prevalence of CRE in East Africa and West Asia

Source	Most Prevalent CRE Species Identified	Overall CRE Prevalence	Most Prevalent CRE Gene	Country	Reference
Urine	E. coli, K. pneumoniae, and E. aerogenes	2.73%	-	Ethiopia	Eshetie et al, 2015
Blood	K. pneumoniae	37.9%	-	Egypt	Nour et al, 2017
Poultry liver, lungs and trachea, droppings drinking water, and human faecal sample working in poultry farms	K. pneumoniae	43%	bla _{KPC} , bla _{OXA-48} , and bla _{NDM}	Egypt	Hamza <i>et al</i> , 2016
Tilapia fish (liver, spleen, and kidney), fishpond water inlets, tap water, outlet water	E. coli	68.2%	bla_{KPC} , bla_{OXA-48} , and bla_{NDM}	Egypt	Hamza et al, 2020
Blood	E. coli,	63.33%	bla_{IMP}	Egypt	Zaki et al, 2019
Wound swab, urine samples, sputum, urine catheter, other body fluid	E. coli	31.8%	bla_{IMP}	Sudan	M. Hamid et al, 2021
Pus swabs	K. pneumoniae	28.6%	$bla_{V\!IM}$	Uganda	Okoche et al, 2015
Stool	E. coli	41.7%	bla_{KPC}	Uganda	Tuhamize et al, 2023
Blood and wound swabs	K. pneumoniae	9.9%	$bla_{\rm NDM-5}$ and $bla_{\rm OXA-181}$	Tanzania	Mapunda et al, 2025
Blood, urine Urine, blood, rectal swabs, and patients' bed swabs	K. pneumoniae Acinetobacter spp	8% 68.8%	bla _{KPC-2} bla _{IMP}	Malawi Tanzania	Kumwenda <i>et al</i> ,2019 Silago <i>et al</i> , 2022
Blood, Cerebrospinal fluid, and other sterile site samples	No isolates were found to be phenotypically resistant to carbapenems	0%	bla _{OXA} -89 and bla _{OXA} - 58 with weak carbapenemase a ctivity	Kenya	Henson et al, 2017
Urine	K. pneumoniae	5.9%	-	Kenya	Ayoyi et al, 2017

Urine, blood, sputum, and pus swab	E. coli	8%	-	Rwanda	Ntirenganya et al, 2015
Urine	Enterobacter spp.	0.16%	-	Democratic Republic of Congo)	Irenge et al, 2014
Urine, wound and tissue, blood, respiratory secretion, abscess, central venous pressure line tip, peritoneal dialysis fluid, cerebrospinal fluid, pericardial fluid, and screening rectal and throat swabs	K. pneumoniae	8%	$bla_{ ext{NDM-1}}$	Kuwait	Jamal <i>et al</i> ,2015
rectal swab	K. pneumoniae	37.9%	bla_{OXA} -48	Iran	Solgi et al, 2017
Blood, urine, sputum, Central venous catheter, pleural swab, wound swab, throat swab	K. pneumoniae	-	$bla_{ ext{NDM-1}}$	Iran	Hosseinzadeh <i>et al</i> , 2018
Rectal swabs	K. pneumoniae	9.8%	$bla_{ m OXA-181}$	Kuwait	A-Fadhli et al, 2020
Urine	E. coli	53.65%	bla_{VIM}	Iraq	Ali Albadery <i>et al</i> , 2022
Blood, urine, sputum, tracheal aspirate, CSF, tissue, catheter swab	K. pneumoniae	67%	-	Turkey	Unlu et al, 2021

In the absence of fast, reliable, and cost-effective point-of-care diagnostics to determine whether an infection is bacterial or viral, both adults and children presenting with fever or respiratory symptoms, often due to viral causes are frequently prescribed antibiotics, which are commonly seen as a convenient treatment option (*CIDRAP*, April 19, 2023). Studies revealed that, in Uganda, most drugs are available over the counter without a prescription from a clinician (Jackson *et al.*, 2013). These observations present a worrying trend of antimicrobial resistance in the East African region (Okoche *et al.*, 2015).

Contributing factors to antimicrobial resistance include the misuse of antibiotics due to weak regulatory enforcement and their widespread availability, limited access to second- and third-line treatment options, the presence of counterfeit or poor-quality antibiotics that promote resistance (Holmes *et al.*, 2016; Laxminarayan *et al.*, 2013; Kelesidis *et al.*, 2015), and inadequate sanitation and hygiene (Collignon *et al.*, 2018; Hendriksen *et al.*, 2019).

Environmental conditions and tropical climate significantly contribute to the proliferation of antibiotic resistance in ecosystems increasing selective pressure on bacteria and facilitating horizontal gene transfer resistance genes (Fernández Salgueiro et al., 2024). The wide range of resistance gene combinations detected, especially in warmer months, highlights the role of environmental factors like temperature and pH in shaping the emergence and development of antibiotic resistance (El Badawy et al., 2025). The hot humid tropical conditions of East Africa and West Asia might play a crucial role in rising antibiotic resistance. Besides this, it might affect antimicrobials as they are transported and stored until the point of use and, subsequently, may impact the development of resistant microbial strains (Fagunwa et al., 2024). This suboptimal eradication pathogens can facilitate the survival of bacteria, which, having been exposed to sub-lethal doses of the drug, consequently, evolve resistance mechanisms (Beceiro et al., 2013). A study on Escherichia coli isolated from Egyptian hospitals and environments gives findings to support the fact that environmental isolates contribute to the local spread of E. coli pathogenicity in Egypt, and these isolates may serve as reservoirs for transmission resistance (El-Sher et al., 2021).

Integrated strategies for surveillance and mitigation grounded in the One Health framework in East Africa and West Asia. The World Health Organization, along with the Food and Agriculture Organization of the United Nations and the World Organization for Animal Health, has called for a comprehensive, multisectoral strategy to tackle the issue of antimicrobial resistance (AMR) while most low-middle economies have little to no programs to address this issue (Founou et al., 2016) due to limited resources, human capacity, laboratories, drugs, policies, and formal programs (Cox et al., 2017). This has been strengthened by the collaboration of regional consortia involving local and regional academic and research institutions in Africa (Katele et al., 2020) while antimicrobial stewardship education programs are needed to preserve the effectiveness and availability of efficacious antimicrobial drugs and to ensure judicious use of antimicrobials to combat AMR in Uganda (Sente et al., 2025). Regional partnerships, such as the Southern African Centre for Infectious Disease Surveillance (SACIDS), and Middle East Consortium on Infectious Disease Surveillance (MECIDS) Foundation for One Health, have collaborated with institutions like the London School of Hygiene and Tropical Medicine, the London International Development Centre, the Royal Veterinary College, Chatham House (Royal

Institute of International Affairs, UK), and the American Society for Microbiology (USA) to combat antimicrobial resistance (AMR) through coordinated research and capacity-building initiatives. The establishment of effective and sustainable AMR surveillance programs in Africa is challenged by inadequate infrastructure and limited resources necessary for conducting high-quality monitoring (Kariuki *et al.*, 2018).

Asia-Pacific Economic Cooperation (APEC) projects are focusing on AMR control strategies in humans and food-producing animals to evaluate the status of AMR integrated surveillance in various APEC economies at different development levels (Lapierre et al., 2017). The link between antibiotic use and the development of resistance is highly complex and depends heavily on the existing composition and dynamics of bacterial populations and earlier studies have shown that there is no single 'silver bullet' solution to fully explain or address this issue (Ahmad et al., 2023). Rather than relying on a single solution, efforts to prevent and reduce the burden of antibiotic resistance (ABR) within a One Health framework should adopt a comprehensive, collaborative approach (Van Puyvelde et al., 2018). This involves addressing specific patterns of antibiotic use, understanding the types and prevalence of resistance within each considering sector. and the potential interactions both within and across human, animal, and environmental systems (Holmes et al, 2016).

CONCLUSIONS

The findings discussed in this review confirm the widespread presence of carbapenemaseproducing bacteria and their associated resistance genes across various sources, including food-producing animals, aquaculture, wildlife, human factors and environmental components. This widespread distribution poses a significant threat to both human and animal health. Multiple studies have revealed genetic similarities between carbapenem-resistant isolates from humans and animals, indicating the potential for crossspecies transmission of these resistant bacteria. Epidemiological and genotypic analyses are essential to gain a deeper understanding of the dynamics of antimicrobial transmission resistance between humans, animals, and the environment. The One Health approach plays a vital role in implementing global surveillance programs and conducting antimicrobial risk assessments across zoonotic and environmental sectors to effectively respond to carbapenem resistance (CR) emergencies. Identifying and sharing best practices and policies on an international scale is crucial. Moreover, strong collaboration between governments is essential to tackle the cross-border public health threats posed by CR. Therefore, harmonized One Health guidelines for antibiotic use, along with strict regulations on their importation and sale, are essential. The rising and dynamic trends in extended-spectrum beta-lactamase (ESBL) and carbapenem-resistant (CAR) carriage rates present a growing public health concern in East Africa and West Asia. Collaborative antimicrobial resistance (AMR) surveillance conducted in partnership with regional and international institutions through an integrated approach is crucial. Such Health collaboration enables expert knowledge exchange, technology transfer, and effective information sharing to support evidence-based policymaking and intervention strategies.

FUNDING INFORMATION

This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health (NIH) under Award Number U54GM115428.

ACKNOWLEDGMENTS

The authors thanks the University of Mississippi Medical Center (UMMC) for their

continuous support. We also thank the Mississippi State University librarian for assistance with the literature review and search of databases (PubMed, Scopus, ScienceDirect, Google Scholar, and Web of Science).

DECLARATIONS OF CONFLICT OF INTEREST

The authors declare no conflict of interest in this paper

REFERENCES

- Abdallah, H. M., Reuland, E. A., Wintermans, B. B., Al Naiemi, N., Koek, A., Abdelwahab, A. M., Ammar, A. M., Mohamed, A. A. and Vandenbroucke-Grauls, C. M. J. E. 2015. Extended-Spectrum β-Lactamases and/or Carbapenemases-Producing Enterobacteriaceae Isolated from Retail Chicken Meat in Zagazig, Egypt. *PloS One* 10 (8): e0136052. https://doi.org/10.1371/journal.pone.01360 52
- Ahmad, N., Joji, R. M. and Shahid, M. 2023. Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. *Frontiers in Cellular and Infection Microbiology* 12: 1065796. https://doi.org/10.3389/fcimb.2022.1065796
- Al Fadhli, A. H., Jamal, W. Y. and Rotimi, V. O. 2020. Prevalence of carbapenem-resistant Enterobacteriaceae and emergence of high rectal colonization rates of blaOXA-181-positive isolates in patients admitted to two major hospital intensive care units in Kuwait. *PLOS ONE* 15 (11): e0241971. https://doi.org/10.1371/journal.pone.0241971
- Ali Albadery, A., Shakir Mahdi Al-Amara, S. and Abd-Al-Ridha Al-Abdullah, A. 2022. Phenotyping and genotyping evaluation of E. coli produces carbapenemase isolated from Cancer Patients in Al-Basrah, Iraq. Archives of Razi Institute, Online First. https://doi.org/10.22092/ari.2022.359869.2493
- Al-Baz, A. A., Maarouf, A., Marei, A. and Abdallah, A. L. 2022. Prevalence and

- Antibiotic Resistance Profiles of Carbapenem-Resistant Klebsiella Pneumoniae Isolated from Tertiary Care Hospital, Egypt. The Egyptian Journal of Hospital Medicine 88 (1): 2883–2890. https://doi.org/10.21608/ejhm.2022.24276
- Allcock, S., Young, E. H., Holmes, M., Gurdasani, D., Dougan, G., Sandhu, M. S., Solomon, L., and Török, M. E. 2017. Antimicrobial resistance in human populations: challenges and opportunities. *Global Health, Epidemiology and Genomics* 2: e4. https://doi.org/10.1017/gheg.2017.4
- Al-Mir, H., Osman, M., Drapeau, A., Hamze, M., Madec, J.-Y. and Haenni, M. 2021. WGS Analysis of Clonal and Plasmidic Epidemiology of Colistin-Resistance Mediated by mcr Genes in the Poultry Sector in Lebanon. Frontiers in Microbiology 12: 624194.

 https://doi.org/10.3389/fmicb.2021.62419
- Ampaire, L., Katawera, V., Nyehangane, D., Boum, Y. and Bazira, J. 2015. Epidemiology of Carbapenem Resistance among Multidrug Resistant Enterobacteriaceae in Uganda. *British Microbiology Research Journal* 8 (2): 418–423. https://doi.org/10.9734/BMRJ/2015/17055
- Ayoyi, A. O., Kikuvi, G., Bii, C. and Kariuki, S. 2017. Prevalence, aetiology and antibiotic sensitivity profile of asymptomatic bacteriuria isolates from pregnant women in selected antenatal clinic from Nairobi, Kenya. *Pan African Medical Journal* 26 (1): 1-12. https://doi.org/10.11604/pamj.2017.26.41.10975
- Beceiro, A., Tomás, M. and Bou, G. 2013.
 Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World? *Clinical Microbiology Reviews* 26 (2): 185–230. https://doi.org/10.1128/CMR.00059-12
- Bonardi, S. and Pitino, R. 2019. Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. *Italian Journal of Food Safety* 8 (2): 7956. https://doi.org/10.4081/ijfs.2019.7956

- Chen, Y.-C., Chen, W.-Y., Hsu, W.-Y., Tang, H.-J., Chou, Y., Chang, Y.-H., Chen, C.-C., Chuang, Y.-C. and Chang, T.-H. 2022. Distribution of β-lactamases and emergence of carbapenemases cooccurring Enterobacterales isolates with high-level antibiotic resistance identified patients with intra-abdominal infection in the Asia–Pacific region, 2015– 2018. Journal of Microbiology, Immunology and Infection 55 (6):1263-1272.
 - https://doi.org/10.1016/j.jmii.2021.07.007
- Collignon, P., Beggs, J. J., Walsh, T. R., Gandra, S. and Laxminarayan, R. 2018. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. *The Lancet Planetary Health* 2 (9): e398–e405. https://doi.org/10.1016/S2542-5196(18)30186-4
- Cox, J. A., Vlieghe, E., Mendelson, M., Wertheim, H., Ndegwa, L., Villegas, M. V., Gould, I. and Levy Hara, G. 2017. Antibiotic stewardship in low- and middle-income countries: the same but different? *Clinical Microbiology and Infection* 23 (11): 812–818.

https://doi.org/10.1016/j.cmi.2017.07.010

- Dall, C. 2023. In low-resource nations, lack of diagnostics hampers fight against antimicrobial resistance. Center for Infectious Disease Research and Policy.

 [Available from: https://www.cidrap.umn.edu/antimicrobial-stewardship/low-resource-nations-lack-diagnostics-hampers-fight-against-antimicrobial. Accessed 6.20.2025
- Danner, M.-C., Robertson, A., Behrends, V. and Reiss, J. 2019. Antibiotic pollution in surface fresh waters: Occurrence and effects. *Science of The Total Environment* 664: 793–804. https://doi.org/10.1016/j.scitotenv.2019.01
 - https://doi.org/10.1016/j.scitotenv.2019.01 .406
- Dong, L., Huang, Y., Zhang, S., Xu, B., Li, B. and Cao, Y. 2025. Risk Factors for Development and Mortality of Carbapenem-Resistant *Pseudomonas aeruginosa* Bloodstream Infection

- in a Chinese Teaching Hospital: A Seven-Year Retrospective Study. *Infection and Drug Resistance* 18:979–991. https://doi.org/10.2147/IDR.S495240
- El Badawy, A., Hamza, D., Ahmed, Z. and Sabry, M. A. 2025. Seasonal and environmental drivers of antibiotic resistance and virulence in Escherichia coli from aquaculture and their public health implications. *Scientific Reports* 15 (1): 16100.https://doi.org/10.1038/s41598-025-98498-8
- El-Defrawy, I., Gamal, D., El-Gharbawy, R., El-Seidi, E., El-Dabaa, E. and Eissa, S. 2022. Detection of intestinal colonization by carbapenem-resistant Enterobacteriaceae (CRE) among patients admitted to a tertiary care hospital in Egypt. *Egyptian Journal of Medical Human Genetics* 23 (1): 83. https://doi.org/10.1186/s43042-022-00295-9
- El-Shaer, S., Abdel-Rhman, S. H., Barwa, R. and Hassan, R. 2021. Genetic characterization of extended-spectrum β-Lactamase- and carbapenemase-producing *Escherichia coli* isolated from Egyptian hospitals and environments. *PLOS ONE* 16 (7): e0255219.

 https://doi.org/10.1371/journal.pone.02552
- Erb, S., D'Mello-Guyett, L., Malebo, H. M., Njee, R. M., Matwewe, F., Ensink, J., Hinic, V., Widmer, A. and Frei, R. 2018. High prevalence of ESBL-*Producing* e. *coli* in private and shared latrines in an informal urban settlement in Dar es Salaam, Tanzania. *Antimicrobial Resistance & Infection Control* 7 (1): 3. https://doi.org/10.1186/s13756-017-0292-y
- Eshetie, S., Unakal, C., Gelaw, A., Ayelign, B., Endris, M. and Moges, F. 2015. Multidrug resistant and carbapenemase producing Enterobacteriaceae among patients with urinary tract infection at referral Hospital, Northwest Ethiopia. *Antimicrobial Resistance and Infection Control* 4 (1): 12. https://doi.org/10.1186/s13756-015-0054-7
- Fagunwa, O. E., Ashiru-Oredope, D., Gilmore, B. F., Doherty, S., Oyama, L. B. and Huws,

- S. A. 2024. Climate change as a challenge for pharmaceutical storage and tackling antimicrobial resistance. *Science of The Total Environment* 956: 177367. https://doi.org/101016/j.scitotenv.2024.17
- Fernández Salgueiro, M., Cernuda Martínez, J. A., Gan, R. K. and Arcos González, P. 2024. Climate change and antibiotic resistance: A scoping review. *Environmental Microbiology Reports* 16 (5): e70008. https://doi.org/10.1111/1758-2229.70008
- Founou, L.L., Founou, R.C. and Essack, S.Y. 2016.
 Antibiotic resistance in the food chain: a developing country-perspective. *Frontiers in Microbiology* 7 :1881. https://doi.org/10.3389/fmicb.2016.01881
- Ghaith, D. M., Mohamed, Z. K., Farahat, M. G., Aboulkasem Shahin, W. and Mohamed, H. O. 2019. Colonization of intestinal microbiota with carbapenemase-producing Enterobacteriaceae in paediatric intensive care units in Cairo, Egypt. *Arab Journal of Gastroenterology* 20 (1): 19–22. https://doi.org/10.1016/j.ajg.2019.01.002
- Giannella, M., Trecarichi, E. M., De Rosa, F. G., Del Bono, V., Bassetti, M., Lewis, R. E., Losito, A. R., Corcione, S., Saffioti, C., Bartoletti, M., Maiuro, G., Cardellino, C. S., Tedeschi, S., Cauda, R., Viscoli, C., Viale, P. and Tumbarello, M. 2014. Risk factors for carbapenem-resistant *Klebsiella pneumoniae* bloodstream infection among rectal carriers: a prospective observational multicentre study. *Clinical Microbiology and Infection* 20 (12): 1357–1362. https://doi.org/10.1111/1469-0691.12747
- Henson, S. P., Boinett, C. J., Ellington, M. J., Kagia, N., Mwarumba, S., Nyongesa, S., Mturi, N., Kariuki, S., Scott, J. A. G., Thomson, N. R. and Morpeth, S. C. 2017. Molecular epidemiology of *Klebsiella pneumoniae* invasive infections over a decade at Kilifi County Hospital in Kenya. *International Journal of Medical Microbiology* 307 (7): 422–429.

https://doi.org/10.1016/j.ijmm.2017.07.00

Hendriksen, R.S., Munk, P., Njage, P., Van Bunnik, B., McNally, L., Lukjancenko, O., Röder, T.,

- Nieuwenhuijse, D., Pedersen, S.K., Kjeldgaard, J. and Kaas, R.S. 2019. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. *Nature Communications* 10 (1):1124 https://doi.org/10.1038/s41467-019-08853-3
- Hosseinzadeh, Z., Ebrahim-Saraie, H. S.,
 Sarvari, J., Mardaneh, J., Dehghani, B.,
 Rokni-Hosseini, S. M. H. and
 Motamedifar, M. 2018. Emerge of bla
 NDM-1 and bla OXA-48-like harboring
 carbapenem-resistant Klebsiella
 pneumoniae isolates from hospitalized
 patients in southwestern Iran. Journal
 of the Chinese Medical Association 81
 (6): 536–540.
 - https://doi.org/10.1016/j.jcma.2017.08.015
- Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J. and Piddock, L. J. V. 2016. Understanding the mechanisms and drivers of antimicrobial resistance.

 The Lancet 387 (10014): 176–187. https://doi.org/10.1016/S0140-6736(15)00473-0
- Hamza, E., Dorgham, S. M. and Hamza, D. A. 2016. Carbapenemase-producing *Klebsiella pneumoniae* in broiler poultry farming in Egypt. *Journal of Global Antimicrobial Resistance* 7:8–10. https://doi.org/10.1016/j.jgar.2016.06.004
- Hamza, D., Dorgham, S., Ismael, E., El-Moez, S. I. A., Elhariri, M., Elhelw, R. and Hamza, E. 2020. Emergence of β-lactamase- and carbapenemase-producing Enterobacteriaceae at integrated fish farms. *Antimicrobial Resistance & Infection Control* 9 (1): 67. https://doi.org/10.1186/s13756-020-00736-3
- Hamid, O.M., Omer, M.O. and Magdi, A.B. 2021.

 Prevalence of Carbapenemase Encoding
 Genes and Antimicrobial Resistance
 Pattern of Enterobacteriaceae Isolated from
 Hospitalized Patients in Khartoum State,
 Sudan. American Journal of Infectious
 Diseases and Microbiology 9 (2): 39–47.

 https://doi.org/10.12691/ajidm-9-2-2
- Irenge, L. M., Kabego, L., Vandenberg, O., Chirimwami, R. B. and Gala, J.-L. 2014.

- Antimicrobial resistance in urinary isolates from inpatients and outpatients at a tertiary care hospital in South-Kivu Province (Democratic Republic of Congo). *BMC Research Notes* 7 (1): 374. https://doi.org/10.1186/1756-0500-7-374
- Jamal, W. Y., Albert, M. J. and Rotimi, V. O. 2016. High Prevalence of New Delhi Metallo-β-Lactamase-1 (NDM-1) Producers among Carbapenem-Resistant Enterobacteriaceae in Kuwait. *PLOS ONE* 11 (3): e0152638. https://doi.org/10.1371/journal.pone.01526
- Katakweba, A. A. S., Møller, K. S., Muumba, J., Muhairwa, A. P., Damborg, P., Rosenkrantz, J. T., Minga, U. M., Mtambo, M. M. A. and Olsen, J. E. 2015. Antimicrobial resistance in faecal samples from buffalo, wildebeest and zebra grazing together with and without cattle in Tanzania. *Journal of Applied Microbiology* 118 (4) :966–975. https://doi.org/10.1111/jam.12738
- Kariuki, S., Keddy, K. H., Antonio, M. and Okeke, I. N. 2018. Antimicrobial resistance surveillance in Africa: Successes, gaps and a roadmap for the future. *African Journal of Laboratory Medicine* 7 (2). https://doi.org/10.4102/ajlm.v7i2.924
- Kateete, D. P., Nakanjako, R., Namugenyi, J., Erume, J., Joloba, M. L. and Najjuka, C. F. 2016. Carbapenem resistant *Pseudomonas aeruginosa* and *Acinetobacter baumannii* at Mulago Hospital in Kampala, Uganda (2007–2009). *SpringerPlus* 5 (1): 1308. https://doi.org/10.1186/s40064-016-2986-7
- Kateete, D. P., Bwanga, F., Seni, J., Mayanja, R., Kigozi, E., Mujuni, B., Ashaba, F. K., Baluku, H., Najjuka, C. F., Källander, K., Rutebemberwa, E., Asiimwe, B. B. and Joloba, M. L. 2019. CA-MRSA and HA-MRSA coexist in community and hospital settings in Uganda. *Antimicrobial Resistance & Infection Control* 8 (1): 94. https://doi.org/10.1186/s13756-019-0551-1
- Kelesidis, T. and Falagas, M. E. 2015. Substandard/Counterfeit Antimicrobial Drugs. *Clinical Microbiology Reviews* 28 (2):443–464.
 - https://doi.org/10.1128/CMR.00072-14

- Katale, B. Z., Misinzo, G., Mshana, S. E., Chiyangi, H., Campino, S., Clark, T. G., Good, L., Rweyemamu, M. M. and Matee, M. I. 2020. Genetic diversity and risk factors for the transmission of antimicrobial resistance across human, animals and environmental compartments in East Africa: a review.

 **Antimicrobial Resistance & Infection Control 9(1):127. https://doi.org/10.1186/s13756-020-00786-7
- Knöppel, A., Näsvall, J. and Andersson, D. I. 2017. Evolution of Antibiotic Resistance without Antibiotic Exposure. *Antimicrobial Agents* and Chemotherapy 61 (11): e01495-17. https://doi.org/10.1128/AAC.01495-17
- Kumwenda, G. P., Sugawara, Y., Abe, R., Akeda, Y., Kasambara, W., Chizani, K., Takeuchi, D., Sakamoto, N., Tomono, K. and Hamada, S. 2019. First Identification and genomic characterization of multidrugresistant carbapenemase-producing Enterobacteriaceae clinical isolates in Malawi, Africa. *Journal of Medical Microbiology* 68 (12): 1707–1715 https://doi.org/10.1099/jmm.0.001087
- Lapierre, L., Asenjo, G., Vergara, C. and Cornejo, J. 2017. Antimicrobial Resistance Control Strategies: A Coordinated Research Initiative Experience in the Asia Pacific Region. *Asia Pacific Journal of Public Health* 29 (4): 250–258.

 https://doi.org/10.1177/101053951770902
- Li, J., Li, Y., Song, N. and Chen, Y. 2020. Risk factors for carbapenem-resistant *Klebsiella pneumoniae* infection: A meta-analysis. *Journal of Global Antimicrobial Resistance* 21: 306–313. https://doi.org/10.1016/j.jgar.2019.09.006
- Logan, L. K. and Weinstein, R. A. 2017. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. *The Journal of Infectious Diseases* 215 (suppl_1): S28–S36. https://doi.org/10.1093/infdis/jiw282
- Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A.K., Wertheim, H.F., Sumpradit, N., Vlieghe, E., Hara, G.L., Gould, I.M., Goossens, H. and Greko, C. 2013.

- Antibiotic resistance—the need for global solutions. The Lancet Infectious Diseases (12):1057-1098.https://doi.org/10.1016/S1473-3099(13)70318-9
- Mukonzo, J.K., Namuwenge, P.M., Okure, G., Mwesige, B., Namusisi, O.K. and Mukanga, D. 2013. Over-the-counter suboptimal dispensing of antibiotics in Uganda. Journal of Multidisciplinary Healthcare 303-310 pp. https://doi.org/10.2147/JMDH.S49075
- McGann, P., Snesrud, E., Maybank, R., Corey, B., Ong, A. C., Clifford, R., Hinkle, M., Whitman, T., Lesho, E. and Schaecher, K. E. 2016. Escherichia coli Harboring mcr-1 and bla_{CTX-M} on a Novel IncF Plasmid: First Report of mcr-1 in the United States. Antimicrobial Agents and Chemotherapy 60 (7): 4420–4421.

https://doi.org/10.1128/AAC.01103-16

- Madoshi, B. P., Kudirkiene, E., Mtambo, M. M. A., Muhairwa, A. P., Lupindu, A. M. and Olsen, J. E. 2016. Characterisation of commensal Escherichia coli isolated from apparently healthy cattle and their attendants in Tanzania. PLOS ONE 11 e0168160. https://doi.org/10.1371/journal.pone.01681
- Manyi-Loh, C., Mamphweli, S., Meyer, E. and Okoh, A. 2018. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 23 (4): 795. https://doi.org/10.3390/molecules2304079
- Moses, A., Bwanga, F., Boum, Y. and Bazira, J. 2014. Prevalence and Genotypic Characterization of Extended- Spectrum Beta-Lactamases Produced by Gram Negative Bacilli at a Tertiary Care Hospital in Rural South Western Uganda. British Microbiology Research Journal 4 (12):1541–1550. https://doi.org/10.9734/BMRJ/2014/9792

Mushi, M. F., Mshana, S. E., Imirzalioglu, C. and Bwanga, F. 2014. Carbapenemase Genes among Multidrug Resistant Gram Negative Clinical Isolates from a Tertiary

- Hospital in Mwanza, Tanzania. BioMed Research International 2014 (1): 3031046. https://doi.org/10.1155/2014/303104
- Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B. and Naghavi, M. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399 (10325): 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0

- Marando, R., Seni, J., Mirambo, M. M., Falgenhauer, L., Moremi, N., Mushi, M. Kayange, N., Manyama, Imirzalioglu, C., Chakraborty, T. Mshana, S. E. 2018. Predictors of the extended-spectrum-beta lactamases producing Enterobacteriaceae neonatal sepsis at a tertiary hospital, Tanzania. *International* **Journal** Medical Microbiology 308 (7): 803–811. https://doi.org/10.1016/j.ijmm.2018.06.01
- Morgan, D. J., Okeke, I. N., Laxminarayan, R., Perencevich, E. N. and Weisenberg, S. 2011. Non-prescription antimicrobial use worldwide: a systematic review. The Lancet Infectious Diseases 11 (9): 692-701. https://doi.org/10.1016/S1473-3099(11)70054-8
- Mshana, S. E., Falgenhauer, L., Mirambo, M. M., Mushi, M. F., Moremi, N., Julius, R., Seni, J., Imirzalioglu, C., Matee, M. and Chakraborty, T. 2016. Predictors of blaCTX-M-15 in varieties of Escherichia coli genotypes from humans in community settings in Mwanza, Tanzania. BMC Diseases Infectious 16: 187. https://doi.org/10.1186/s12879-016-1527-
- Mapunda, L., Mwingwa, A., Kamori, D., Kumburu, H., Van Zwetselaar, M., Blomberg, B. and Manyahi, J. 2025. Co-existence of two blaNDM-5 and blaOXA-181 on distinct plasmids in a carbapenem-resistant

- Klebsiella pneumoniae from a tertiary hospital, Tanzania. *Journal of Global Antimicrobial Resistance* 41: 173–180. https://doi.org/10.1016/j.jgar.2024.12.011
- Nour, I., Eldegla, H. E., Nasef, N., Shouman, B., Abdel-Hady, H. and Shabaan, A. E. 2017. Risk factors and clinical outcomes for carbapenem-resistant Gram-negative late-onset sepsis in a neonatal intensive care unit. *Journal of Hospital Infection* 97 (1): 52–58. https://doi.org/10.1016/j.jhin.2017.05.025
- Ntirenganya, C., Manzi, O., Muvunyi, C. M. and Ogbuagu, O. 2015. High prevalence of antimicrobial resistance among common bacterial isolates in a Tertiary Healthcare Facility in Rwanda. *The American Society of Tropical Medicine and Hygiene* 92 (4): 865–870. https://doi.org/10.4269/ajtmh.14-0607
- Okoche, D., Asiimwe, B. B., Katabazi, F. A., Kato, L. and Najjuka, C. F. 2015. Prevalence and Characterization of Carbapenem-Resistant Enterobacteriaceae Isolated from Mulago National Referral Hospital, Uganda. *PLOS ONE*, 10 (8): e0135745. https://doi.org/10.1371/journal.pone.0135745
- Osman, M., Al Mir, H., Rafei, R., Dabboussi, F., Madec, J.-Y., Haenni, M. and Hamze, M. 2019. Epidemiology of antimicrobial resistance in Lebanese extra-hospital settings: An overview. *Journal of Global Antimicrobial Resistance* 17: 123–129. https://doi.org/10.1016/j.jgar.2018.11.019
- Partridge, S. R., Kwong, S. M., Firth, N. and Jensen, S. O. 2018. Mobile Genetic Elements Associated with Antimicrobial Resistance. *Clinical Microbiology Reviews* 31 (4): e00088-17.

https://doi.org/10.1128/CMR.00088-17

Silago, V., Mruma, E. C., Msemwa, B., Mtemisika, C. I., Phillip, S., Ndagula, R. A., Said, M. M., Mushi, M. F. and Mshana, S. E. 2022. Predominance of *Acinetobacter* spp., harboring the blaIMP gene, contaminating the Hospital environment in a Tertiary Hospital in Mwanza, Tanzania: A Cross-Sectional Laboratory-Based Study. *Pathogens* 11 (1): 63.

- $\frac{\text{https://doi.org/10.3390/pathogens1101006}}{3}$
- Sivalingam, P., Poté, J. and Prabakar, K. 2019. Environmental Prevalence of Carbapenem Resistance Enterobacteriaceae (CRE) in a Tropical Ecosystem in India: Human Health Perspectives and Future Directives. *Pathogens (Basel, Switzerland)* 8 (4): 174. https://doi.org/10.3390/pathogens8040174
- Shen, Y., Zhang, R., Schwarz, S., Wu, C., Shen, J., Walsh, T. R. and Wang, Y. 2020. Farm animals and aquaculture: significant reservoirs of mobile colistin resistance genes. *Environmental Microbiology* 22 (7): 2469–2484. https://doi.org/10.1111/1462-2920.14961
- Seni, J., Falgenhauer, L., Simeo, N., Mirambo, M. Imirzalioglu, C., Matee, M., Rweyemamu, M., Chakraborty, T. and Mshana, S. E. 2016. Multiple ESBL-Producing Escherichia coli Sequence **Types** Carrying Quinolone and Aminoglycoside Resistance genes circulating in Companion and Domestic Farm Animals in Mwanza, Tanzania, harbor commonly occurring Plasmids. in Microbiology 7: 142. **Frontiers** https://doi.org/10.3389/fmicb.2016.00142
- Sente, C., Brookshire, C., Ferguson, K. and Khaitsa, M. 2025. Antimicrobial Use and Stewardship among practicing veterinarians in Uganda. *East African Journal of Science, Technology and Innovation* 6. https://doi.org/10.37425/pbww0e70
- Sonda, T., Kumburu, H., van Zwetselaar, M.,
 Alifrangis, M., Mmbaga, B. T., Lund, O.,
 Aarestrup, F. M. and Kibiki, G. 2018.
 Prevalence and risk factors for CTX-M
 gram-negative bacteria in hospitalized
 patients at a tertiary care hospital in
 Kilimanjaro, Tanzania. European Journal
 of Clinical Microbiology & Infectious
 Diseases: Official Publication of the
 European Society of Clinical Microbiology
 37(5):897–906.
 https://doi.org/10.1007/s10096-018-3196-
- Ssekatawa, K., Byarugaba, D. K., Wampande, E. and Ejobi, F. 2018. A systematic review: the current status of carbapenem resistance

- in East Africa. *BMC Research Notes* 11 (1): 629. https://doi.org/10.1186/s13104-018-3738-2
- Solgi, H., Badmasti, F., Aminzadeh, Z., Giske, C. G., Pourahmad, M., Vaziri, F., Havaei, S. A. and Shahcheraghi, F. 2017. Molecular characterization of intestinal carriage of carbapenem-resistant Enterobacteriaceae among inpatients at two Iranian university hospitals: first report of co-production of bla NDM-7 and bla OXA-48. *European Journal of Clinical Microbiology & Infectious Diseases* 36 (11): 2127–2135. https://doi.org/10.1007/s10096-017-3035-3
- Taggar, G., Attiq Rehman, M., Boerlin, P. and Diarra, M. 2020. Molecular Epidemiology of Carbapenemases in Enterobacteriales from Humans, Animals, Food and the Environment. *Antibiotics* 9 (10): 693.

https://doi.org/10.3390/antibiotics9100693

- Tuhamize, B., Asiimwe, B. B., Kasaza, K., Sabiiti, W., Holden, M. and Bazira, J. 2023. *Klebsiella pneumoniae* carbapenamases in *Escherichia coli* isolated from humans and livestock in rural south-western Uganda. *PLOS ONE* 18 (7): e0288243. https://doi.org/10.1371/journal.pone.02882
- Thomsen, J., Abdulrazzaq, N. M., The UAE AMR Surveillance Consortium, Everett, D. B., Menezes, G. A., Senok, A. and Ayoub Moubareck, C. 2023. Carbapenem resistant Enterobacterales in the United Arab Emirates: a retrospective analysis from 2010 to 2021. Frontiers in Public Health 11: 1244482. https://doi.org/10.3389/fpubh.2023.12444
- Todman, H., Arya, S., Baker, M. and Stekel, D. J. 2023. A model of antibiotic resistance genes accumulation through lifetime exposure from food intake and antibiotic treatment. *PLOS ONE* 18 (8): e0289941. https://doi.org/10.1371/journal.pone.0289941
- Unlu, O., Ersoz, B. R., Istanbullu Tosun, A. and Demirci, M. 2021. Epidemic *Klebsiella pneumoniae* ST258 incidence in ICU patients admitted to a university hospital in

- Istanbul. *The Journal of Infection in Developing Countries* 15 (05): 665–671. https://doi.org/10.3855/jidc.13430
- Van Puyvelde, S., Deborggraeve, S. and Jacobs, J. 2018. Why the antibiotic resistance crisis requires a One Health approach. *The Lancet Infectious Diseases* 18 (2): 132–134. https://doi.org/10.1016/S1473-3099(17)30704-1
- Vos, T., Lim, S.S., Abbafati, C., Abbas, K.M., Abbasi, M., Abbasifard, M., Abbasi-Kangevari, M., Abbastabar, H., Abd-Allah, F., Abdelalim, A. and Abdollahi, M. 2020. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. *The Lancet* 396 (10258): 1204-1222. https://doi.org/10.1016/S0140-6736(20)30925-9
- Zaki, M., El-Halaby, H., Elmansoury, E., Zeid, M., Khaled, K. and Nomir, M. 2019. Genetic Study of Extended Spectrum Beta-Lactamase and Carbapenemase Producing Escherichia coli causing Sepsis among Egyptian Children. The Open Microbiology Journal 13 (1): 128–137. https://doi.org/10.2174/187428580191301 0128
- World Health Organization. 2017. Stop using antibiotics in healthy animals to prevent the spread of antibiotic resistance. [Available from: https://www.who.int/news/item/07-11-2017-stop-using-antibiotics-in-healthy-animals-to-prevent-the-spread-of-antibiotic-resistance. Accessed 6.20.2025]
- World Health Organization. 2018. WHO Sepsis Technical Expert Meeting meeting report. [Available from https://iris.who.int/bitstream/handle/10665/330086/WHO-HIS-SDS-2018.7-eng.pdf. Accessed 6.20.2025]